Effects of Time-Dependent Stimuli in a Competitive Neural Network Model of Perceptual Rivalry

Suren Jayasuriya Zachary P. Kilpatrick

 $\mathcal{R}_{\text{max}} = \mathbf{Y}_{\text{max}} = \sqrt{\mathbf{A}\mathbf{Y}_{\text{max}}} \mathbf{0}_{\text{max}} = \mathbf{0}_{\text{max}}$ © Society for Mathematical Biology 2012

 T _{ime} $\sum_{i=1}^n a_i$

 $t_{\rm eff} = \frac{1}{2} \sqrt{(\frac{1}{2} \pi \sqrt$ \mathbf{a} in \mathbf{v} in the contrast of both stimuli increases the rivalry alternation rate. The rivalry alternation rate \mathbf{a} $P_1 \cap \mathcal{P}_1$ in $\mathcal{P}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ in that is stimulus will define extensive extensive one extends the contrast of one extends of one extends the contrast of one extends the contrast of one extends $\mathcal{C}_{\mathcal{A}}$ chease the dominance time of the other. Recent evidence suggests proposition (iii) may be defined by \overline{m} hold for \overline{m} \overline{m} and \overline{m} increasing \overline{m} and \overline{m} increasing one stimulus \overline{m} $c_{\rm tot}$ affects the dominance time of the stronger stimulus (Brascamp et al. [2006](#page-29-2)) $c_{\rm tot}$ $\begin{array}{l} \mathcal{R}_{\rm int} = \frac{1}{2} \mathcal{R}_{\rm int} \left[\begin{array}{ccc} \mathcal{R}_{\rm int} & \mathcal{R}_{\rm int} & \mathcal{R}_{\rm int} \\ \mathcal{R}_{\rm int} & \mathcal{R}_{\rm int} & \mathcal{R}_{\rm int} \end{array} \right] \mathcal{R}_{\rm int} \left[\begin{array}{ccc} \mathcal{R}_{\rm int} & \mathcal{R}_{\rm int} & \mathcal{R}_{\rm int} \\ \mathcal{R}_{\rm int} & \mathcal{R}_{\rm int} & \mathcal{R}_{\rm int} \end{array} \right] \mathcal{R}_{\rm int$ $\arctan x$ e time dominance time dependence upon international stimuli (see timuli (see timul $\overline{\mathbf{F}}_k = \nabla \left(\overline{\mathbf{F}}_k \right)$ intervals intervals intervals intervals in the same perceived in the same p $r_{\rm m}$, $r_{\rm m}$ et al. 2003 $r_{\rm m}$ row (Orbital et al. 2003; Leopold et al. 2003; Leopold et al. 2003; Leopold et al. [2002](#page-29-4); Leopold et al. 2003; Leopold et al. 2003; Leopold et al. 2003; Leopold et al. 2002; Leopold \mathbb{R} . \mathbb{R} et al. [2003;](#page-29-5) Pearson and Brascamp [2008\)](#page-30-3), possibly due to recovery of adaptation of adaptation of adaptation \mathbb{R} . $\tau_{\rm eff}$ tive processes in the intervals in the intervals of $\sigma_{\rm eff}$ et al. [2009\)](#page-29-6). Switching seems in the intervals seems in the intervals of $\sigma_{\rm eff}$ $\tau_{\rm min}$ to $\tau_{\rm min}$ be not be $\tau_{\rm min}$. The mass $\tau_{\rm max}$ of $\tau_{\rm max}$ and $\tau_{\rm min}$ is to have memory up to $\tau_{\rm min}$ $s_{\rm{max}} = \frac{1}{200} \left(\frac{0.200 \text{ m}}{100 \text{ s}} \right)$. $\frac{1}{200} \left(\frac{0.200 \text{ m}}{100 \text{ s}} \right)$. In addition, the $\frac{1}{200}$ \bar{Q} in $\bar{\nabla}$ then strengthening of alternating executive alternation Q_1 and \bar{Q} \mathbb{Z}_{m^2} and \mathbb{R} by \mathbb{Z}_{2} by \mathbb{Z}_{m} , \mathbb{Z}_{2} to the time course of $\sum_{n=1}^{\infty}$ intensifications (Kang et al. [2009\)](#page-29-7). Understanding the neural processes under processes under processes under $\int_{\mathbb{R}^d} \mathbb{E}_{\mathbf{r}} \cdot \mathbf{r} \cdot \mathbf{r} = \int_{\mathbb{R}^d} \mathbb{E}_{\mathbf{r}} \cdot \mathbf{r} = \int_{\mathbb{R}^d} \math$ $\frac{1}{2}$

$$
\frac{4\pi}{4} \int_{\frac{1}{2}}^{0} \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{1}{2} \
$$

Fig. 6

+ $I > a_L(t)$ **and** $-$ + $I_R < a_R(t)$, t (, T

 T_{10}

 N in the similar inequality of the second part of the second part of the oscillation, when \mathbb{R}^n $I_L(t) = -1$ At $\int_{0}^{t} \int_{0}^{t} \rho \phi(t) dt$, $\int_{0}^{t} \rho \phi(t) dt$ and $\int_{0}^{t} \rho \phi(t) dt$ $a_L(T_I) = -a_L(0) e^{-T_I/7}$ and the right population should show that the right population should show that \mathbf{r} $I_R > a_R(T_I) = a_R(0)e^{-T_I/2}$. F_{1} to F_{2} to $t=T_I$ to T_I , the states of \mathbb{R} of \mathbb{R} and \mathbb{R} of \mathbb{R} and \mathbb{R} \mathbf{r}_{mean} and \mathbf{r}_{norm} population with \mathbf{r}_{norm} $-$ < < a_L(t), t (T_I, T_I), $\frac{a}{\sqrt{a}}$ is always true, and the right population must not release the right population must not release the right population $\frac{a}{\sqrt{a}}$

Fig. 8 Cycle skipping generates 1 : *n* mode-locked solutions in network ([1a](#page-4-0))–([1d\)](#page-4-1) with left input intera 2 for rupted in time where (**a** *n* = 2 for

5 Time-Variation in Both Inputs

 $S_{\rm eff}$ several authors have examined the effect of simultaneously switching both inputs $\sqrt{2}$ and \mathbf{r}_1 in \mathbf{v}_2 in a competitive network (\mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 , \mathbf{v}_5 , \mathbf{v}_6 , \mathbf{v}_7 , \mathbf{v}_8 , \mathbf{v}_9 , \math \mathbf{F}_{eff} and \mathbf{F}_{eff} in an attempt to understand how intervals \mathbf{F}_{eff} s_n single percept to remain in dominance for longing \mathcal{F}_n in \mathcal{F}_n . \mathcal{F}_n is a length of the set al. [1963](#page-30-2); Leopold et al. 1963; Leopold et al. 1963; Leopold et al. 1963; Leopold et al. 1963; Leopold et al. al. [2002](#page-29-4); Blake et al. [2003](#page-29-5); Chen and He [2004](#page-29-10)). They did not probe more complex more comple $d_{\rm max}$ denote the study here. Exploiting a fast $\frac{d}{dt}$ fast $\frac{d}{dt}$ fast $\frac{d}{dt}$ fast $\frac{d}{dt}$ rameter space, in a single input varied case of \mathcal{R}_i to the single input varied case of Sect. , into different case of Sect. , in the single varied case of Sect. , in the single varied case of Sect. , in the single v $\mathbf{d} = \sum_{i=1}^{n} \sum_{i=1}^{n} \mathbf{d}_{i} \mathbf{d}_{i} + \sum_{i=1}^{n} \mathbf{$ s_{μ} 0 s_{μ} α or α . \mathbf{s} . 1 Phase-Locked Online \mathbb{R} $T_1 = 0$ one simplest possible periodic solution is one where T_1 \overline{C} Frequencies \overline{C} to \overline{C} \overline{C} and \overline{C} . Activity variables should then be in c_{α} , as shown as shown as shown as shown and a fast α fast α fast α fast α and at arrive at arrive at a fast α the same expression for both adaptation \mathbf{r}_i and \mathbf{r}_i and \mathbf{r}_i as in the phase-locked case for \mathbf{r}_i $\frac{1}{2}$ the single varied $\frac{0}{2}$ a_j () = a_j (T_I) = $\frac{a_j}{T_I}$ ag a_j (T_I) = $\frac{a_{j+1}}{T_I}$, j = L, R. $\mathbf{N}_i \in \mathbb{R}^{n_i}$ we require that neither population $\mathbf{N}_i \in \mathbb{R}^{n_i}$ and they are only are only are only as the theorem in the that the second secon switched \mathbf{v} and \mathbf{v} by changes in the input of input \mathbf{v} $\mathbf{t} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ \mathfrak{so}_1 for \mathfrak{so}_{n+1} (P^{-}) \longrightarrow \longrightarrow $\frac{1}{t}$ + \longrightarrow $\frac{1}{t}$ \longrightarrow $\frac{1}{t}$ \longrightarrow $\frac{1}{t}$ *(*OF-ii*)* Switching OFF: − *β <* ⁺ *^e*−*TI /τ ,*

 \mathcal{D} Springer

 \hat{Z}

 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix}$

Fig. 11 \bullet Partition

 $\sum_{i=1}^n a_i$ Γ ⁱ) Γ ² Γ ² $I > \frac{e^{-T_I / 2} (1 - e^{-T_I / 2} + e^{-T_I / 2})}{\frac{1}{1 - 2} + 1}$, Γ ⁱⁱ) R (2) \mathbf{F} \mathbf{g}^2 − + *∆I >* $\frac{+}{-}$ $\frac{+}{-}$ $\frac{-}{I}$ $\int_0^1 (e^{-T_I x})^f e^{-T_I x} dx$ + $\int_0^1 e^{-T_I x} dx$ $+$ − − *I* + *e*[−] *T_I /*

$$
\Gamma \qquad \qquad + \quad \frac{1}{I} \leq \frac{(1 - \frac{1}{I}) (1 + e^{-T_I / 2}) + (e^{-T_I / 2}) + (e^{-T_I / 2})}{1 - e^{-T_I / 2} + e^{-T_I / 2}},
$$

 $\begin{picture}(180,10) \put(0,0){\vector(1,0){100}} \put(10,0){\vector(1,0){100}} \put(10,0){\vector(1,0){100}} \put(10,0){\vector(1,0){100}} \put(10,0){\vector(1,0){100}} \put(10,0){\vector(1,0){100}} \put(10,0){\vector(1,0){100}} \put(10,0){\vector(1,0){100}} \put(10,0){\vector(1,0){100}} \put(10,0){\vector(1,0){100}} \put(10,0){\vector(1,0){100}}$

Finally, the right population switches OFF after *TR*, its sole dominance time $I(T_U + T_L + T_R - T) + = a_R(T_U + T_L + T_R - T).$

 $\mathbb{D}_{\mathbf{m}}$ solving for the adaptation variables and $\mathbb{D}_{\mathbf{m}}$ in $\mathbb{D}_{\mathbf{m}}$ tion ([\)](#page-5-0), we arrive at the following for the following for the associated durations for the associated durations of \mathbb{R}^n p_{α} phase of the behavior of the behavior

$$
\frac{I}{I_{T}} - \frac{I}{I_{T}} = \frac{e^{(-T_I + T_L + T_U)/} - e^{-T_I}}{-e^{-T_I}}.
$$
\n
$$
\frac{I}{I_{T}} - \frac{(T_L - T)}{T_I} + \frac{e^{(-T_I + T_R + T_U)/} - e^{-T_I}}{-e^{-T_I}}.
$$
\n
$$
\frac{I}{I_{T}} - \frac{(T_U + T)}{T_I} = \frac{e^{(-T_I + T_R + T_U)/} - e^{-T_I}}{-e^{-T_I}}.
$$

 $\sum_{i=1}^{n} 0_i$ er $\frac{1}{n}$ modell $\sum_{i=1}^{n} 0_i$

 $\mathbf{a}_k \in \mathbb{R}^{d-1}$ at \mathbb{R}^{d-1} and an \mathbb{R}^{d-1} on \mathbb{R}^{d-1} and a host of novellation of novellation \mathbb{R}^{d-1} \mathbb{P} oscillatory behaviors in competitive networks can arise when it constant and input is constant and inpu $e^{2\theta}$ especially time-dependent. We believe the provide a rich avenue for study in the e $\overline{\mathbf{v}}_i = \mathbf{v}_i$ models of $\overline{\mathbf{v}}_i = \overline{\mathbf{0}}_i$ and $\overline{\mathbf{v}}_i = \overline{\mathbf{0}}_i$ and $\overline{\mathbf{v}}_i = \overline{\mathbf{0}}_i$ Noest et al. [2007\)](#page-30-4) as well as experimental studies of perceptual rivalry (Blake and Logothetis [2002;](#page-29-8) $\mathbb{E}[\mathbf{z}]$

Perceptual rivalry has long provided a noninvasive way of uncovering neural sub- $\begin{array}{l} \left\{ \begin{array}{ll} \circ & \bullet & \circ \\ \circ & \circ & \circ \\ \bullet & \bullet & \circ \end{array} \right. \end{array}$ strates of visual experience (Eq. [2002\)](#page-29-8). Our results suggest supply to the model of the supply of the model of the supply of the model of the model of the supply $\mu_{\rm c}$ eral directions for gauging contrast dependent mechanisms in binocular vision and $\sigma_{\rm c}$ $\mathcal{F}_1 = \mathbf{Q}$ models of perceptual rivalry to potential data sets. The periodic inter $r_{\rm L}$ ⁰ruption \sim $\sqrt{2}$ in a binocular rivalry enacted in $\sqrt{2}$ rivalry enacted in a binocular rivalry experiment. $F_{\rm eff}$ high contrasts, our analysis predicts the subject should immediately perceive the subject should immediately perceive the subject should immediately perceive the subject should be subject should be subject to the $\frac{1}{2}$ intervals, once it is turned on $\frac{1}{2}$ is the off period is long enough. This is long enough is long enough. This is long enough is long enough in the OFF period is a second to the OFF period is a second to t $\sum_{i=1}^n \sum_{i=1}^n \sum_{j=1}^n c_{ij}^2$ and $\sum_{i=1}^n c_{ij}^2$ or the claim that dominance support in percep- $\frac{1}{\sqrt{2}}$ rivalent are mainly governed by a slow adaptive process (Laing and Chow [2002](#page-29-0)) $L = 200$ $R_{\rm eff} = 200$ $R_{\rm eff} = 200$ $R_{\rm eff} = 200$ $R_{\rm eff} = 200$

et al. [2007](#page-30-7)). As the length of the stimulus ON period is increased, it would be increased, it would be in $t_{\rm eff,0}$ teresting to see when subjects locking of the phase of $\sum_{i=1}^{\infty} \frac{1}{n_i} \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \frac{1}{n_i} \sum_{i=1}^$ $\mathbf{q} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\frac{1}{16}$ tude. It is interesting that the dominance time of a perception of a perception increases with increases w \vec{r}_max ing contrast, as shown in our analysis in \vec{r}_max in Sect. . This reverse the contrast dependent of \vec{r}_max $d_{\mathbf{r}}(\mathbf{x}) = \mathbf{r} + \mathbf$ time decreases as contrast increases according to Levelt proposition (iv) (Levelt [1965](#page-30-0) $\mathbf{S} = \begin{bmatrix} \mathbf{S} & \mathbf{$ $\begin{array}{cccccccccccccccccc} \mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{c}_{3} & \mathbf{c}_{4} & \mathbf{c}_{5} & \mathbf{c}_{6} & \mathbf{c}_{7} & \mathbf{c}_{8} & \mathbf{c}_{9} & \mathbf{c}_{1} & \math$ analysis. This may relate to existing evidence of hysteresis between function \mathbf{r} values of previous experiments (Buckthought et al. [2008\)](#page-29-12). Rather than simply record- $\lim_{n\to\infty} \frac{1}{n} \int_{-\infty}^{\infty} \frac{1}{n} e^{-n} \frac{1}{n} \lim_{n\to\infty} \frac{1}{n} \int_{-\infty}^{\infty} \frac{1}{n} e^{-n} \frac{1}{n} \int_{-\infty$ $\frac{1}{\sqrt{m}}$

Our results also suggest several interesting directions for future theoretical work α , $\mathbf{u} = \mathbf{u} \cdot \mathbf{u}$ $\frac{1}{2}$ 0, we have found not behaviors such as mixed mode oscillations such as $\frac{1}{2}$ $(\mathcal{M}, \mathcal{L})$. This is not surprising, since \mathcal{L} is not surprising, since \mathcal{L} is not surprising, since \mathcal{L} \mathbf{v}_1 and compute neural neural network model where adaptation depends linearly upon \mathbf{v}_1 $r_{\rm{max}} = \frac{1}{2}$ rate (Curtus). However, studying such behavior in a non-mous system in a nonmay offer \mathbf{v}_i and \mathbf{v}_i \mathbf{v}_i of \mathbf{v}_i and \mathbf{v}_i \mathbf{v}_i \mathbf{v}_i \mathbf{v}_i \mathbf{v}_i \mathbf{v}_i α and α into our model, we could examine how robust the boundaries particles particle t_{t} in parameters are in the face of perturbation. In particular, the particular, the particular, the particular, the parameters $\frac{1}{2}$ region in \mathbb{R} by $\begin{array}{c} \n\mathbb{R} \n\end{array}$ of $\begin{array}{c} \n\mathbb{R} \n\end{array}$ in pure $\begin{array}{c} \n\mathbb{R} \n\end{array}$ in pure \mathbb{R}

