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A CUBED SPHERE GRAVITY MODEL FOR FAST ORBIT
PROPAGATION

Brandon A. Jones, George H. Born�, and Gregory Beylkiny

The cubed sphere model of the gravity field maps the primary body to the surface
of a segmented cube, with a basis defined on the cube surface for interpolation pur-
poses. As a result, the model decreases orbit propagation time and provides a lo-
calized gravity model. This paper provides a brief description of the cubed sphere
model, which is currently derived from the spherical harmonics. Early tests of the
integration constant did not meet requirements, thus the model was reconfigured
to improve accuracy. A detailed characterization of the model was then performed



A new model, the cubed sphere, was developed to localize the gravity field and decrease the
model evaluation time.1 At its core, the cubed sphere is an interpolation model that relies on a
localized basis defined on the surface of a segmented cube. This cube is mapped to a sphere to
represent spherical objects. This paper explores applications of this cubed sphere model to orbit
propagation, particularly how it compares to the spherical harmonics model solutions.

THE CUBED SPHERE MODEL

Originally proposed by Beylkin and Cramer,1



The geopotential values computed by the remaining base model are then used to define the ba-
sis functions on the surface of the cube. Although other formulations are possible, B-splines are
currently used. The method for deriving the cubed sphere will now be defined.

A major property of the cubed sphere model that must be defined is the grid size, N . Similar to
the degree and order of the spherical harmonic model, the grid size is a measure of model fidelity
and defines the density of the grid on each cube panel. For a given altitude, the values of latitude
and longitude are segmented such that

� = 2�x; � = 2�y (2)

where x and y are discrete values in the range [0; 1) with spacing N�1. It may not be readily
apparent why the latitude, �, is in the range [0; 2�), but this will be understood in a moment.

Latitude and longitude have been mapped to a two dimensional grid specified by x and y to solve
for the B-spline interpolation scheme. As described in the appendix, the interpolation coefficients
are easily derived in the Fourier domain for a periodic, two dimensional plane. If the grid variables x
and y are 1-periodic, then the two-dimensional FFT algorithm may be used. The values of potential
at grid intersection points are used as data values. Hence, given a cube is comprised of six planes,
the FFT algorithm provides a simplified method for representing the potential on the surface of a
cube.

If � only varies from ��=2 to �=2, or 0 to �, then y is not 1-periodic. Thus, the formulation of
the Earth’s geopotential must be duplicated to complete the period. The mathematical formulation
of the new geopotential, Up, is then

Up(r; �; �) =

(
U(r; �; �) if 0 � � < �;

U(r; 2� � �; � + �) if � � � < 2�
(3)

and � is now a value in the range [0; 2�) and 2�-periodic. Thus, y is now 1-periodic and the
FFT algorithm is used to generate the B-spline interpolation coefficients. Note the doubling of the
geopotential model is only used to generate these coefficients.

To prevent grid distortion given the ambiguity of longitude at the poles, the Earth is rotated so
that the poles lie along the equator. This is equivalent to the transverse mercator map projection. A
second x-y plane is generated after this rotation, with the FFT algorithm applied and a second set of
B-spline coefficients determined. This rotation is performed in the formulation of the base model.

B-spline coefficients have been defined over the flat surface of the two x-y grids. The grids
are then broken into appropriate segments to generate the faces of a cube. Each face, or panel,
of the cube has a new x-y grid with axes defined over the range [�1; 1]. Four panels along the
middle latitudes are selected from the first plane, while the two remaining panels along the poles
are selected from the second plane. Grid spacing is preserved along the face of the cube, however
the new panels are a quarter of the size. Thus, the size of the grid on each panel is N /4 by N /4.
This property is used in the naming convention defined for a given model. A CS-X model is a
cubed sphere model where X corresponds to the grid size on a cube face , or N=4. Finally, the
geopotential model for the given shell has now been defined and is represented as a cube.

Additionally, a user specified number of nested, concentric shells is defined for interpolation in
the radial direction. Shell spacing is determined by defining a set number of points (hj) equally
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spaced in the interval [0; 1]. Shell locations are then

R

rj
= 1� h2

j (4)

where rj is the radial distance of the shell. These ratios, which represent a distance above the
planet’s surface in the range (0; 1], define shell locations. As the ratio approaches zero, the orbit
radius approaches infinity. Shell density increases as altitude decreases, corresponding to the inverse
square relationship between geopotential and radius. The final shell at a radius of infinity is not
computed. The model assumes eventual decay to zero of the spherical harmonic terms, thus the
two-body equation will govern satellite dynamics.

These primary shells are modeled with each consisting of subshells for polynomial interpolation
of a prescribed degree in the radial direction. For a fifth degree interpolation scheme, six subshells
are required. The spacing between subshells is mapped to the range [�1; 1] where zero corresponds
to the midpoint between primary shells. The subshells are then located at the Chebyshev nodes
based on the degree of the polynomial. Chebyshev nodes were selected to minimize interpolation
error due to node selection. Each primary and subshell is independent of all others, thus there is
no coupling in model generation. B-spline coefficients for each shell are generated as previously
described using the applicable altitude for the evaluation of Eq. 3. A total of (l + 1) �M shells
are computed where l is the degree of the interpolating polynomial and M is the number of primary



Model Configuration

Test software was written to evaluate the model at a user defined number of random points above
the primary body. For each point, the cubed sphere model is compared to the base model and theL1
norm is evaluated. The maximum norm of all points is then used to characterize the accuracy of the
model. Tests utilized 105 random points, with any increases yielding similar results. The original
cubed sphere model differed from the spherical harmonics by as much as 10�9 m/sec2. Although
this value may appear rather small, the model was reconfigured and accuracy was improved to 10�11

m/sec2, and 10�14 m/sec2 for lower fidelity models. The main focus of this reconfiguration was to
improve model performance for higher fidelity models, i.e. equivalents to the 70x70 models and
those of higher degree and order. Full benefits of the reconfiguration will be demonstrated in the
section discussing the integration constant performance.

Table 2. Cubed Sphere Configuration

Property Before Current

Number of parameters estimated (P ) 3 4
B-spline degree (m) 11 11

Chebyshev polynomial degree (l) 5 11
Number of primary shells (M ) 13 13

Grid Density
(N ) for:

CS-30 / 20x20 80 120
CS-76 / 70x70 280 304

CS-162 / 150x150 600 648

Changes to the cubed sphere configuration made in the course of this research, along with other
major properties, are included in Table 2. Note the change in Chebyshev polynomial degree and
grid density did result in a file size increase. Additionally, the original model did not include the
estimate of the potential at a given point. Of course, these configuration parameters can be tailored
to a specific design based on orbit accuracy requirements and file size limitations. If the potential is
not required, the file size is reduced by almost 25%. Table 2 defines the base models for the CS-30,
CS-76, and CS-162 models used throughout this study. Other changes were made to the software
to improve computation speed and switch from the unnormalized to normalized formulation of the
associated Legendre functions in the base model. Finally, the model storage scheme of the B-
spline coefficients was altered to allow for loading of selected shells to reduce software memory
requirements and decrease initialization time.

The number of elements that must be stored in the model are computed using

Number of elements = 6P (l + 1)M
�
N

4
+m

�2

(5)

where the meaning of the terms are found in Table 2 or the notation section. Additionally, there is
some memory overhead associated with the file header. For the CS-30 model, this results in a 49
Mb file. Similarly, a 856 Mb file is required for a CS-162 model. However, the complete model is
not required for most applications. Since the model is localized, only the primary and secondary
shells required for a given orbit must be generated or loaded into memory.
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Experimental results demonstrate the evaluation time of the cubed sphere model is slightly more
than the 20x20 spherical harmonics. As the model grid density is increased, corresponding to an
increase in model fidelity, evaluation time does not increase. The B-spline coefficients are organized
such that no search is necessary. If the degree of the interpolating functions remains constant for
each grid size, model evaluation time remains constant. Thus, speed-up factors compared to the
spherical harmonics increases with model fidelity.

COMPARISONS TO THE SPHERICAL HARMONICS MODEL

After the cubed sphere was fully developed, it was compared to the spherical harmonics model.
The GGM02C10 model was selected as both the base model of the cubed sphere and the basis of
comparison for the following tests. Evaluations included a comparison of the integration constant,
spatial comparisons of the models in the form of gravity anomaly plots, and finally the propagated
orbits themselves.

The TurboProp orbit integration package11 was used to minimize software development time.
This software provides integration tools implemented in C that are compatible with MATLAB.
Unreleased versions are also compatible with Python. The cubed sphere model, along with the nec-
essary interface code, was implemented within the TurboProp framework. However, the software
can be easily ported to other packages. For the following tests requiring orbit propagation, the Tur-



the geopotential and the gravity accelerations. However, this will drastically increase file size.
Additionally, finite differencing would only be an approximation.

Instead of testing the cubed sphere under the Laplace criterion, another technique using the
Jacobi-like integration constant,12

K =
_~r
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Figure 4 Comparison of the integration constant variations for the CS-70 model with
the spherical harmonics base model. Error bars are 1-�.
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Figure 5 Comparison of the integration constant variations for the CS-150 model
with the spherical harmonics base model. Error bars are 1-�.
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Results for the CS-162 model are provided in Figure 5. Note some extreme values have been
truncated to improve visibility of performance statistics at higher altitudes. In the case of the dif-
ferences in the magnitude differences, the minimum values for the 100 and 150 km orbits are -3.39
and -1.51 mm2/sec2, respectively. The maximum values are 5.20 and 1.79 mm2/sec2. In the case
of the trend slope differences, the missing maximums are 0.44 and 0.14 mm2/sec2/hour. Like the
CS-76 model, differences between the cubed sphere and spherical harmonics models are greater at
lower altitudes. This trend remains consistent through the remaining tests, and is attributed to the
greater differences in the gravity anomalies at lower altitudes seen in the next section. In this case,
the differences in the models settles around 250 km.
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Figure 7. CS-162 gravity anomalies at 300 km

included, but yielded similar results to the previous two models. The grid spacing was visible, but
the regions of higher differences were not as isolated as the CS-162 case.

Figure 8 Variations in gravity anomalies with altitude for 42 points on the Earth
using the CS-30, CS-76, and CS-162 models.

To illustrate gravity anomaly variations with altitude, Figure 8 illustrates the difference in gravity
anomalies for each of the models for altitudes up to geosynchronous orbit. Most of the forty points
depicted were randomly selected, although a couple of points were chosen to coincide with regions
of expectedly large anomalies, such as the Himalayan mountains. As expected, peak variations in
the cubed sphere model with respect to the spherical harmonics occur at lower altitudes. Addition-
ally, the largest anomalies occur for the higher fidelity models. At various altitudes, the differences
become discretized due to machine precision and the relatively low contribution the perturbations

11



modeled by the cubed sphere have on the overall gravity acceleration.

For the CS-162 model, there is a region below 300 km and around 10�10 mGal where the varia-
tions are periodic. In this case, the difference is close to the machine precision and is not determined
by the grid spacing. Given the Chebyshev interpolation between shells, approximation error will
vary based on proximity to the nearby shells. Thus, as the altitude increases for this point in Figure
8



execution of the RK78 algorithm, and did not include file load times or software initialization. As
expected, the file load time for the cubed sphere is longer than the spherical harmonics, however



all others are within 0.015 mm of the spherical harmonics. The spatial distribution of the velocity
errors roughly corresponds to the position errors, with a minimum of 2.503x10�8 mm/sec and a
maximum of 2.037x10�5 mm/sec. The median 3D RMS velocity error was 3.80x10�6 mm/sec.
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Figure 12 Distribution of 3D RMS differences for propagated orbits initially at 300
km with the CS-30 model.
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Figure 13 Distribution of 3D RMS differences for propagated orbits initially at 300
km with the CS-76 model.

Histograms of the propagation state errors for the CS-30 and CS-76 models at 300 km are pro-
vided in Figures 12 and 13, respectively. Contour plots of these errors for the CS-30 and CS-76
model have not been included since results were similar to those seen for the CS-162 model. Any
accuracy differences in the results are visible in the histogram plots.

The CS-30 model position 3D RMS errors were within 0.02 mm, and as small as 4.701x10�5

mm. The median value was 0.0036 mm. The velocity errors had a median of 4.11x10�6 mm/sec,
and ranged between 2.993x10�8 and 2.266x10�5 mm/sec. These results were roughly the same as
those for the CS-162 model. Only twenty orbits had 3D RMS position errors above 0.0125 mm,
and 17 had velocity errors above 1.5x10�5 mm/sec.

Orbit propagation differences for the CS-76 model were roughly the same as those of the previous
two models. The minimum 3D RMS error was 3.246x10�5 mm, with a maximum of 0.0177 mm.
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The median was 0.0033 mm. The velocity errors were less than 2.042x10�5 mm/sec, with a median
of 3.788x10�6 mm/sec. The minimum error was 2.042x10�8 mm/sec.

CONCLUSIONS

Results demonstrate that the cubed sphere model closely approximates the base model, in this
case the spherical harmonics. Orbit propagation tests demonstrated model agreements on the order
of fractions of a millimeter, and position results are summarized in Table 5. The cubed sphere model
equivalent to a 150x150 spherical harmonics was over 40 times faster. However, the spherical
harmonics was slightly faster for the lower fidelity model. Future research will seek to further
customize the model to improve computation efficiency for these lower fidelity models.

Table 5. Cubed Sphere Position 3D RMS Performance at 300 km

Model Min (nm) Max (mm) Mean (mm) Median (mm)

CS-30 47.0 0.0200 0.0042 0.0031
CS-76 32.5 0.0177 0.0041 0.0033
CS-162 57.1 0.0176 0.0040 0.0033

The new configuration of the cubed sphere demonstrated model improvement. Fluctuations in the
integration constant were greatly reduced, with less than 1% of the orbits tested exhibiting fluctua-
tions that differed by more than an order of magnitude between the cubed sphere and the spherical
harmonics model. Changes in the integration constant, including the maximum fluctuation for a
given orbit and the long term trend, are consistent between the two models. For the higher fidelity
models, performance is reduced below 200 km. In some cases, the cubed sphere performs better
than the spherical harmonics, probably due to slight smoothing of the model when interpolating
between the nodes on the surface of the cube. Gravity anomalies were also reduced, and are now
within 10�6 mGal for all altitudes above the Earth, and less less than 10�7 mGal for altitudes at or
above 300 km.

Future research will include integrating the cubed sphere with the orbit determination process for
both Earth and Moon based missions. Even though second derivatives currently are not included
in the cubed sphere, integration with nonlinear filters, such as the unscented Kalman,13 is rather
straightforward.

Unfortunately, characterizations of moon based models were not included here. Due to the rel-
atively extreme gravity variations due to mass concentrations caused by asteroid impacts,6 initial
results demonstrated that additional tuning of the cubed sphere for lunar applications is required.
Additionally, lower altitude orbits are desirable at the moon. This is a small concern considering the
cubed sphere exhibited reduced performance below 300 km. However when the ratio of the primary
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NOTATION

U geopotential
� gravitational parameter (km3=sec2)

~r; r position vector and magnitude for the satellite (km)
� geocentric latitude (rad)
� longitude (rad)
R equatorial radius of the primary body
n spherical harmonics model degree
m spherical harmonics model order

Pn;m associated Legendre function of x with degree and order m and n
Cn;m cosine coefficient of spherical harmonics
Sn;m sine coefficient of spherical harmonics
N number of lines used to segment a plane
P number of cubed sphere parameters estimated
l Chebyshev polynomial degree

M number of primary shells in cubed sphere

 right ascension of the ascending node
i inclination
K Jacobi like integration constant
~! primary body rotation vector

Bm B-spline of degree m
Lm interpolating spline of degree m
� B-spline interpolation coefficient

g(x) generic continuous function
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where Lm are interpolating splines, i.e.

Lm(l) = �
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