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Abstract We study the spatiotemporal dynamics of
neuronal networks with spike frequency adaptation.
In particular, we compare the effects of adaptation
being either a linear or nonlinear function of neural
activity. We find that altering parameters controlling
the strength of synaptic connections in the network
can lead to spatially structured activity suggestive of
symptoms of hallucinogen persisting perception disor-
der (HPPD). First, we study how both networks track
spatially homogeneous flickering stimuli, and find in-
put is encoded as continuous at lower flicker frequen-
cies when the network’s synapses exhibit more net
excitation. Mainly, we study instabilities of stimulus-
driven traveling pulse solutions, representative of vi-
sual trailing phenomena common to HPPD patients.
Visual trails are reported as discrete afterimages in
the wake of a moving input. Thus, we analyze several
solutions arising in response to moving inputs in both
networks: an ON state, stimulus-locked pulses, and
traveling breathers. We find traveling breathers can
arise in both networks when an input moves beyond a
critical speed. These possible neural substrates of visual
trails occur at slower speeds when the modulation of
synaptic connectivity is increased.
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1 Introduction

Hallucinogen persisting perception disorder (HPPD) is
a malfunction wherein past users of lysergic acid diethy-
lamide (LSD) continue to see images reminiscent of
drug induced hallucinations (Halpern and Pope 2003).
Similar conditions have been described as the result
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in one’s thoughts); and (iii) recurrent unbidden images
(subjects see objects that are not there) (Horowitz
1969).
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Fig. 1 (a) Snapshots of a spot of light rotating continuously on
a circle. During visual trailing phenomena, one would see this
not simply as a smoothly rotating light, but most likely discrete
afterimages in addition to the smoothly rotating light image. They
may also see a smudging out of the image, much like the tail of a
comet. Halo phenomena lead to the observer seeing the light spot

as larger than it actually is. (b) Drawing of a single snapshot of
visual experience by an HPPD patient watching an arrow rotating
counterclockwise. The blue and red arrow is the representation
of the arrow’s actual location, and the faint dark arrows are the
afterimages of the arrow left in its wake. Redrawn from H. D.
Abraham (2011, personal communication)

network accurately resolving the stimulus, only neurons
containing the light spot in their receptive field would
represent it in visual cortex at any given point in time.
Due to alterations in the neurotransmitter levels of
visual cortex due to LSD usage, we presume neurons
will represent the stimulus in regions addition to the
area of presentation in an HPPD patient. Trails are
represented by spatially discrete patches of neurons
in the wake of the stimulus that fire for a period of
time after input has been removed. A patient’s own
rendering of the discrete afterimages characteristic of
visual trails are pictured in Fig. 1(b), when the stimulus
is an arrow rotating counterclockwise (H. D. Abraham,
2011, personal communication). Halos may also appear
around the object represented by neurons around the
input being continuously on. All are potential realiza-
tions of HPPD in this simple stimulus paradigm.

Large-scale spatially structured activity such as the
rotating spot of activity suggested by the above experi-
mental setup is often modeled as a standing or traveling
pulse of activity in neural field models of cortex (Wilson
and Cowan 1972; Amari 1977). In these models, the
evolution of mean firing rate in continuous space and
time can be represented by a system of dynamical
equations (Coombes 2005). These often appear as in-
tegrodifferential equations that incorporate specifics of
the neural system in question with a particular synaptic
connectivity (or weight) function, form of firing rate
function, spatial domain, and auxiliary variables repre-
senting modifications to the mean population activity.
Such systems can be analyzed extensively to deter-
mine how model functions and parameters relate to
the existence of different solutions like traveling waves

(Pinto and Ermentrout 2001; Coombes and Owen 2004;
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current, Benda and Herz derived a neural field model
where the relationship between neural activity and
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waves, especially in networks with no lateral inhibition
(Hansel and Sompolinsky 1998; Pinto and Ermentrout
2001; Folias and Bressloff 2005b; Troy and Shusterman
2007; Kilpatrick et al. 2008).
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to the stimulus are close enough to communicate. In
this case, neurons that are close to one another will
excite one another and distal neurons will inhibit one
another, with lateral inhibition connectivity. Analysis
of the networks (2.1) and (2.2) is straightforward in the
case of the harmonic weight function (2.6). However, it
is conceivable that the rotating spot stimulus applied to
a subject may have a circular path that is wide enough
that connection strengths between some patches of
neurons are effectively zero. In this case, the size of
the domain would increase and we take the weight
function

w(x − x′) = e−|x−x′|/σe

− Aie−|x−x′|/σi , |x − x′| ∈ [0, L], (2.7)

where Ai parametrizes the amount of synaptic inhibi-
tion, σe (σi) the spatial scale of excitatory (inhibitory)
connections, and L the spatial size of the network. The
analysis of Sections 3 and 4 could be extended to a
system with the weight function (2.7). Resulting formu-
lae would merely be more tedious to derive and not as
straightforward to examine. Thus, we simply perform
numerical simulations of the system with a larger spatial
domain and weight function (2.7) in Section 5.

We specify the rotating input I(x − ct) as being al-
ways non-negative and periodic upon the spatial do-
main x ∈ (−L, L). A class of functions that fits this
restriction is

I(x − ct) = I0 cos2

(
x − ct

2

)
(2.8)

where I0 is the strength of this input, which we use for
our analysis of the system in Sections 3 and 4. In the
simulations of Section 5, where we extend our study to
larger networks, we use a Gaussian input stimulus

I(x − ct) = I0e−(x−ct)2/σ 2
I , (x − ct) ∈ [−L, L], (2.9)

where I0 is input strength, σI the input spatial scale, and
the domain width L > π for the simulations in which
we use this input. For the bulk of the paper, we use
stimulus strengths I0 high enough so that substantial
portions of the network operate close to saturation.
This is in light of the fact that we are modeling high
contrast visual inputs (see Fig. 1). Ben Yishai and col-
leagues examined the effects of weak inputs in a ring
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so that I = I0 when t ∈ (2nT
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function (2.6), on the spatial domain x ∈ (−π, π), and
rotating input with finite speed, so

ut = −u − v +
∫ π

−π

(w0 + w2 cos(x − x′))

× H(u(x′, t) − κ)dx′ + I0 cos2

(
x − ct

2

)
,

vt = (−v + βu)/α. (3.7)

In order to check if the ON state exists for particular
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V(ξ) = β(w0� + I0/2)

1 + β

+ V3

[
w2 sin(ξ + �) − w2 sin ξ − I0

2
cos(ξ + �I)

]

+ V4

[
w2 cos ξ − w2 cos(ξ + �) − I0

2
sin(ξ + �I)

]
,

(3.17)

where

U3 = α2c2 + 1 + β

D ,

U4 = α2c3 − αcβ + c
D ,

and

V3 = αc2β − β(1 + β)

D ,

V4 = βc(α + 1)

D .

Therefore, to specify the pulse width � and associated
shift to the input �I , we impose self consistency by
requiring that the input current U(ξ) specified by Eq.
(3.16) cross firing threshold κ at the leading and trailing
edge of the pulse such that U(π) = U
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Fig. 6 Profiles of the
(a) stable and (b
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(a) (b)

Fig. 8 Numerical simulations of stimulus-locked pulses and trav-
eling breathers in the network with linear adaptation (2.1) for
a Heaviside firing rate (2.5), where u(x, t) is plotted. (a) For a
speed (c = 0.2) within the region of parameter space where stable
locked traveling pulses exist. (b) For a speed (c = 1) beyond the

critical speed where stable pulses cease to exist, superthreshold
activity periodically lurches, representative of a discrete afterim-
age. Other parameters are κ = 0.1, α = 10, β = 0.5, w0 = 0.02,
w2 = 0.5, and I0 = 0.5

analysis proceeds by plugging these expressions in the
system (2.1) along with the traveling pulse solutions
(3.16) and (3.17). Upon expanding to first order in
(ψ, φ), we arrive at the linear equation

− cψ ′ + (λ + 1)ψ + φ = w(ξ − π)ψ(π)

|U ′(π)|
+ w(ξ − π + �)ψ(π − �)

|U ′(π − �)| ,

−φ′ + (λ + α−1)φ = βψ

α
, (3.18)

where we have used the identity

dH(U(ξ) − κ)

dU
= δ(ξ − π)

|U ′(π)| + δ(ξ − π + �)

|U ′(π − �)| . (3.19)

In Folias and Bressloff (2005b), there is a detailed
analysis of the complete spectrum of a similar linear
operator on the infinite domain. We forgo such analysis
here and focus particularly on the point spectrum of
the operator in the system (3.18). In doing so, we can
associate the point spectrum of the linear operator
with the zeros of a complex analytic function called
the Evans function (Coombes and Owen 2004). Thus,
to predict the stability of stimulus-locked pulses, we
look for nontrivial solutions of the eigenvalue problem
(3.18). First, we note that the values which bound the
essential spectrum λ = −1 + ip and λ = −α−1 + ip (p ∈
R) will not contribute to any instabilities. Omitting
these values from the remainder of our analysis, we
proceed by solving for the associated eigenfunctions.
As we did in the solution of the existence problem, we

can solve for φ in terms of ψ to convert the system
(3.18) to the following equation

− cψ ′′ + ((c + 1)λ + c(1 + α−1))ψ ′

−((λ + α−1)(λ + 1) + βα−1)ψ

= ψ(π)

|U ′(π)|
[
cw′(ξ − π) − (λ + α−1)w(ξ − π)

]

+ ψ(π − �)

|U ′(π − �)|
× [

cw′(ξ − π + �) − (λ + α−1)w(ξ − π + �)
]

.

By treating the pointwise terms ψ(π) and ψ(π − �) as
constants, we can solve this equation as an inhomoge-
neous second order differential equation in the case of
the harmonic weight function (2.6). Upon applying pe-
riodic boundary conditions, we arrive at the following
expression for the eigenfunction

ψ(ξ) =
[
P0 + P1 sin ξ − P2 cos ξ

Dp

]
ψ(π)

|U ′(π)|

+
[
P0 + P1 sin(ξ + �) − P2 cos(ξ + �)

Dp

]

× ψ(π − �)

|U ′(π − �)| , (3.20)

where

P0 = w0(αλ + 1)

A1
,

P1 = w2[α2c3 − αcA1 + c(αλ + 1)A2],
P2 = w2[(αλ + 1)(A1 − αc2) + αc2A2],
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with

A1 = (αλ + 1)(λ + 1) + β,

A2 = 2αλ + α + 1,

Dp = [αc2 − A1]2 + (cA2)2 .

Requiring self-consistency of the solution (3.20), we
generate the following 2 × 2 linear system of equations
ψ = Apψ where2
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leaving a single unstable pulse whose linear stability is
determined by a positive real eigenvalue. Nonetheless,
the spatiotemporal dynamics of the network do evolve
to a propagating pulse solution whose width changes
periodically, as shown in Fig. 8.

3.4 Bumps

To consider the network dynamics resulting as the
rotating input is slowed to a stop, we study the limit of
the stimulus speed as c → 0. In this case, there will be a
stationary input, so we will look for stationary solutions,
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Fig. 10(a), showing the wide bump is unstable and the
thin bump is stable.

4 Nonlinear adaptation

Benda and Herz have derived a reduced firing rate
model with an adaptation variable from three different
conductance based models with hyperpolarizing cur-
rents thought to participate in spike frequency adap-
tation (Benda and Herz 2003). The adaptation vari-
able has a nonlinear dependence upon the activity
variable. Using this idea, a few studies have examined
the effects that different forms of nonlinear adapta-
tion have upon spatiotemporal dynamics of firing rate
models (Coombes and Owen 2004, 2005; Kilpatrick and
Bressloff 2010b). For example, Coombes and Owen
(2005) showed that a neural field model with nonlinear
adaptation can support breathing bumps and pulses as
well as more exotic solutions without any spatially in-
homogeneous input being applied (Folias and Bressloff
2004, 2005b). As has been shown in Kilpatrick and
Bressloff (2010c), the stability analysis of bumps and
traveling pulses in networks with nonlinear adaptation
can be much more subtle than in the linear adapta-



42 J Comput Neurosci (2012) 32:25–53



J Comput Neurosci (2012) 32:25–53 43



44 J Comput Neurosci (2012) 32:25–53

Fig. 16 Profiles of the
(a) stable for c = 0.2 and
(b) unstable pulse for c = 0.8.
Solutions U(ξ) and V(ξ)

given by Eqs. (B.1) and (B.2),
respectively. Note that the
solution U(ξ) remains above
the threshold V(ξ) + κ within
the region ξ ∈ (π − �, π)
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we find qualitatively similar results for the relationship
between stimulus speed and the form of the resulting
solution. In Fig. 20, we show two example simulations
similar to that pictured in Fig. 8(b) for the Heaviside
firing rate. The behavior of the model with a sigmoid
firing rate, even for a fairly low gain of η = 10, is quite
similar to that with infinite gain. We found through nu-
merical simulations that the switch from locked pulses
to traveling breathers occurs at a stimulus speed of
roughly c = 0.4, which is not too far removed from
that predicted in the system with the Heaviside firing
rate (2.5). Likewise, we found the onset of traveling
breathers beyond a critical stimulus speed of roughly
c = 0.5 for the network with a piecewise linear firing
rate with slope γ = 2. For weak inputs (not shown),
firing rate functions do not saturate but networks with
continuous firing rate functions exhibit the same tran-
sitions between locked and breathing pulses and the
speed at which the transition between these two behav-
iors decreases as synaptic modulation increases. When
inputs become sufficiently weak, there is no transition
to the ON state as c is increased to infinity, just as we
found for networks with Heaviside firing rate.

We carried out such simulations for other parameter
sets as well for both networks, with linear and nonlinear
adaptation (not shown). Overall, it appears using a
sigmoid with finite gain or a piecewise linear function
does not drastically alter the dynamics existent in the
system. Therefore we conclude that using the Heaviside
firing rate for the bulk of our theoretical predictions in
this paper is a reasonable approximation. In general,
the firing rate of a neuron or population of neurons
is known to be a continuous function input current.
Therefore, the validity of our predictions in previous
sections relies on the reduction of the firing rate to

a piecewise constant function being a justifiable first
order approximation.

Now, we turn to studying the networks with both a
sigmoidal firing rate function (2.3) as well as the alter-
native weight function (2.7) in a larger periodic domain,
specifically L = 10π . In addition we use a Gaussian
input stimulus (2.9) to the network. In general, we find
similar results to those of the smaller network with
L = π for the transitions of stimulus-locked traveling
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Appendix A: ON state in system with nonlinear
adaptation

In this appendix, we derive Eq. (4.3), giving the critical
speed c∗ at which the ON state ceases to exist in the
full network with nonlinear adaptation (2.2). Thus, we
study the equations,

ut = − u +
∫
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w0� + I0

2
+ I0[c sin(�I − �) − cos(�I − �)]

2(1 + c2)

+w2[sin � + c(1 − cos �)]
1 + c2

= β
1 − e−�/αc

1 − e− �



J Comput Neurosci (2012) 32:25–53 51

ψ(π), ψ(π − �), φ(π), φ(π − �) terms as constants, to
find

ψ(ξ) = χπ

[
P0 + P1 sin ξ − P2 cos ξ

Dp

]
(ψ(π) − φ(π))

+ χπ−�

[
P0 + P1 sin(ξ +
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