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(Buschman et al. 2011; Lara and Wallis 2012). Resource
models of WM allow for such flexibility, suggesting many
possibilities for how storage precision varies across task
parameters (van den Berg et al. 2012; Fougnie et al. 2012).

Computational models that capture behavioral patterns
in multi-item WM are an active area of research (Barak
and Tsodyks 2014). It remains an open question what
neural mechanisms underlie these trends in response
variability. Recent studies have extended the framework
of continuous attractor networks, successful in capturing
error accumulation in single-item WM tasks (Wimmer
et al. 2014), to account for errors observed in multi-item
WM (Edin et al. 2009; Wei et al. 2012; Almeida et al.
2015). These models are well-suited to store memoranda
drawn from a continuous space, such as locations and
colors (See Fig. 1). Recurrent networks comprised of a
locally excitatory population coupled to a broadly tuned
inhibitory population produce “bumps” of persistent neural
activity (Amari 1977; Compte et al. 2000). Bumps encode
the remembered location of a presented angle during the
WM delay period, and fluctuations arising from stochastic
spiking or synaptic transmission degrade memory of the
initial position (Compte et al. 2000; Kilpatrick et al.
2013). Multi-item WM errors arise in these models via
the interactions of multiple bumps, each bump encoding a
distinct angle (Edin et al. 2009; Wei et al. 2012; Almeida
et al. 2015). Bumps can repel, merge, or annihilate one
another via nonlocal synaptic interactions of the network.
For randomly chosen angles, the relative precision of recall
decreases with set size according to a power law (Wei
et al. 2012), as in Bays and Husain (2008). Thus, a
multiple bumps model of WM appears to reconcile observed
behavioral trends with known neural circuit mechanisms for
storing WM using persistent activity.

These previous studies were performed using large-
scale spiking simulations, however, and could not draw
clear connections between parameters and the model’s WM
performance. An advantage of using neural field equations
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2.1 Model definition

We study a neural field model in which locations of neurons
correspond to their preferred stimulus orientation, organized
in a ring architecture with slow local excitation and broad
inhibition (Ermentrout 1998):

du(x, t) = [−u(x, t) + w(x) ∗ H(u(x, t) − θ)] dt

+√
ε · |u(x, t)| dZ(x, t). (2.1)

The variable u(x, t) represents synaptic input to spatial
location x ∈ [−L,L] at time t , which is periodic
so u(L, t) = u(−L, t). The weight function w(x −
y) represents the synaptic connectivity from neurons at
location y to location x via the convolution w ∗H(u− θ) =∫
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dZ(x, t)〉 = εC(0)〈sign[u(x, t)]〉dt/2 (Novikov 1965),
smaller than the

√
ε-amplitude noise term we consider.

Note, we have run simulations of both the original Eq. (2.1)
and the associated mean-corrected equations, and the results
are not noticeably different.

2.2 Single bump solutions

Solutions to the noise-free (Z ≡ 0) version of Eq. (2.1) can
be found explicitly for specific weight functions (Bressloff
2012). In particular, single bump (stationary pulse) solutions
exist when w(x) satisfies requirements making it laterally
inhibitory (Amari 1977), as Eq. (2.2) is. We construct this
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for j = 1, 2. Since the integral in Eq. (2.18) can be
evaluated, we employ our definition, Eq. (2.7), of the
antiderivative W(x) and write
∫ x2(t)

x1(t)

w(xj (t) − y)dy = W(x2(t) − x1(t)),

yielding an even simpler form for the interface equations

dxj (t) = (−1)j

ᾱ

(
[−θ + W(x2(t) − x1(t))] dt

+√
ε · θ dZ(xj (t), t)

)
(2.19)

for j = 1, 2. We now remark on a number of observations
to be made concerning Eq. (2.19). First, in the absence of
noise (Z ≡ 0), there is a line of fixed points to the resulting
equation

dxj

dt
= (−1)j

ᾱ
(−θ + W(x2(t) − x1(t))) (2.20)

for j = 1, 2, in the space (x1, x2) satisfying W(x2 − x1) =
θ
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Beyond this boundary, the stored angles repel one another.
There is an abrupt transition in the MSE corresponding
to this boundary point (Fig. 8c). Importantly, the MSE is
limited from below at each x0 by the variance a single bump
(〈�2〉 = D · T ), not interacting with another bump. Thus,
even though the peak MSE grows significantly for the case
A = 10, it is important to note that the MSE will be
significantly smaller at large values of x0, since individual
bumps diffuse less for larger values of A (Fig. 4f).

The lower bound on the MSE produced by a single
bump’s trajectory is approached when the two bumps are
either initiated at the same location (x0 = 0), or when the
bumps are initiated sufficiently far from one another. While
there will always be vanishingly small repulsive effects that
will tend to push bumps farther apart, we see that even
for x0 ≈ 6, the MSE appears to approach a lower limit.
This is because the long-range interactions between bumps
are on the order of e−12 ≈ 6 × 10−6, when using the
weight function Eq. (2.2). These effects are smaller than
the discretization error produced by the spatial mesh of
our numerical integration scheme, so we would expect the
strength of repulsion to be weaker than the pinning produced
by discretizing, as discussed in Guo and Chow (2005).

Performance on the two-item WM task with random
initial targets φ1 and φ2 is considered in Fig. 8e. Recall
variability, represented by the MSE, is greater than what
would be predicted by a model that allows distinct slots
for each item. Note, there have been efforts to revise the
slot model (Zhang and Luck 2008; Cowan 2010), so that
error increases when considering two items versus one
item. However, the increases in error arising from neural
activity dynamics we observe are much more nuanced than
would be possible for previous phenomenological slots
or resources models (Zhang and Luck 2008; Bays and
Husain 2008). Both items (bumps) are stored in a single
network, producing interactions between bumps when items
are initially close, which contributes an additional source
of variability to the recall. Merging produces a systematic
shift in the remembered location of items, as does
repelling. The frequency of these interactions grows as the
synaptic strength parameter A is increased, counteracting
the reduction in diffusion also produced by increasing A.
This tradeoff produces a non-monotonic dependence of the
MSE on A (Fig. 8e), so there is an optimal A for two-item
storage with low-diffusion of bumps and low-probability
of bump interaction. This optimum occurs when A ≈ 10,
so even though the peak MSE is much larger than for the
cases A = 1, 2 (Fig. 8c), the average MSE is smaller
since bumps are less susceptible to stochastic perturbations.
Note, the MSE in the interacting bumps model is larger than
would be predicted by a slots model that assumes MSE is
unchanged as the number of items is increased up to some
fixed capacity (Fig. 8e).

Our interacting bumps model can account for the item-
dependent increase in the variability of recall in two-item
WM tasks (Wilken and Ma 2004; Bays et al. 2009). This
arises due to the nonlinear interactions between the bumps,
which add to the variability already present due to the
dynamic fluctuations in the network. We now examine item-
dependent changes in recall variability for tasks with more
than two items, showing our analysis extends to the case of
multiple interacting bumps.

4 Multiple interacting bumps

Recent models of multi-item WM focus on uncovering the
nature of item-number limitations, as they impact response
variability (Ma et al. 2014). Phenomenological models can
be altered to capture errors that either reflect a finite capac-
ity or the distribution of resources (Zhang and Luck 2008),
but physiologically-inspired models account for the archi-
tecture and dynamics of neural circuits underlying WM
storage (Bays 2015). The work of Edin et al. (2009), Wei
et al. (2012), and Almeida et al. (2015) has shown that a
recurrent spiking network can support multiple bumps that
each individually encode a different item. Our model is a
tractable version of these previous studies, allowing us to
deriveexplicit expressionsdescribing limitations of the network.

Prior to developing effective equations for bump inter-
faces, we consider the problem of network capacity. This
is one way in which our model differs from the standard
resource model of WM. Only a finite number of bumps can
be stored in the recurrent network, and this upper limit is
determined by the choice of the synaptic strength parameter
A. However, we note this upper limit is quite large. We
can approximate this limit by again examining a stationary
solution problem.

4.1 Network capacity

We frame the problem of identifying network capacity by
attempting to identify multi-bump stationary solutions to
Eq. (2.1) in the absence of noise (Z ≡ 0). Finite multi-bump
solutions are not stable in the limit L → ∞ (Laing and
Troy 2003b), since multiple active regions exert a repulsive
drift on one another. If bumps are spaced evenly around
the domain, the conformation is stable since the repulsive
forces acting on each bump from either direction balance.
Thus, stable multi-bump solutions constitute a periodic pat-
tern that wraps around the domain. One question is just how
the minimal period of this pattern changes as the synaptic
strength A is changed. Since A
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We also require hN ∈ [0, dN/2)
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Eq. (2.1
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1, ..., M). For simplicity, we focus on the case of two
symmetrically-placed bumps in two distinct layers

A(0) = [−b0, −a0] × {j} ∪ [a0, b0] × {k},
of a symmetric network (Wjk(x) ≡ Wkj (x), ∀j, k).
Therefore, we can write Eq. (5.5a, b) as

a′
1(t) = 1

ᾱ

[
θ − W(b1 − a1) − Wjk(b2 − a1)

+Wjk(a2 − a1)
]
, (5.6a)

b′
1(t) = − 1

ᾱ

[
θ − W(b1 − a1) − Wjk(b2 − b1)

+Wjk(a2 − b1)
]
, (5.6b)

a′
2(t) = 1

ᾱ

[
θ − W(b2 − a2) − Wkj
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the interfaces can be obtained by evolving an integral equa-
tion describing the dynamically evolving gradient at the
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