Karolin Luger /biofrontiers/ en Biochemists untangle mysteries of cellular form, function /biofrontiers/2019/04/25/biochemists-untangle-mysteries-cellular-form-function <span>Biochemists untangle mysteries of cellular form, function</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2019-04-25T00:00:00-06:00" title="Thursday, April 25, 2019 - 00:00">Thu, 04/25/2019 - 00:00</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/biofrontiers/sites/default/files/styles/focal_image_wide/public/article-thumbnail/capture90211.jpg?h=d2e6f092&amp;itok=4B_0dPj2" width="1200" height="600" alt="Karolin and Natalie"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/biofrontiers/taxonomy/term/24"> Awards </a> <a href="/biofrontiers/taxonomy/term/425"> Faculty </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/biofrontiers/taxonomy/term/342" hreflang="en">Karolin Luger</a> <a href="/biofrontiers/taxonomy/term/338" hreflang="en">Natalie Ahn</a> </div> <span>Trent Knoss</span> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/biofrontiers/sites/default/files/styles/large_image_style/public/article-image/capture90211.jpg?itok=fBoGYe3-" width="1500" height="1125" alt="Karolin and Natalie"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>The complex inner workings of cells, from their architecture to their signaling, underlie much of multicellular organic life. How are they built? How do their proteins interact? And most crucially, how can understanding these functions improve our knowledge of biological outcomes such as disease?</p> <p>University of Colorado Boulder Distinguished Professors Karolin Luger and Natalie Ahn have studied questions such as these for decades. Last year, both were elected to the&nbsp;<a href="http://www.nasonline.org/" rel="nofollow">National Academy of Sciences</a>, one of the most prestigious honors a scientist can receive. The duo will be formally inducted on Saturday, April 27 at the organization’s annual meeting.</p> <p>“It’s a high honor because it comes from peers,”&nbsp;said Luger, the endowed chair of ýĻƷ’s&nbsp;<a href="/biochemistry/" rel="nofollow">Department of Biochemistry</a>&nbsp;and a&nbsp;<a href="https://www.hhmi.org/" rel="nofollow">Howard Hughes Medical Institute</a>&nbsp;Investigator. “It’s primarily a&nbsp;wonderful acknowledgement of the collective work of all the former and present students, post-docs and technicians who have contributed to this research.”</p> <p>Like an archeologist piecing together the origins of ancient structures, Luger and her students examine the fundamental building blocks of genomic processes and untangle their cellular machinery.</p> <p>Luger began her career with an interest in x-ray crystallography, a technique used to discern 3D molecular structures. Eventually, her focus shifted to chromatin, the material that holds DNA, RNA and proteins together in a compact package within eukaryotic cells. As recently as the late 1980s, before the advent of the Human Genome Project, chromatin was thought to be unimportant, similar to packaging material that only serves to hold more valuable items inside.</p> <p>“It was a binary mentality back then, but it turned out to be much messier, with lots of variation between individual cells,” Luger said. “The packaging, so to speak, has very important implications for how cell types differentiate.”</p> <p>Imagine a space filled with labeled cardboard boxes full of books, she says. By reading the labels on the boxes, humans can discern which boxes they’ll need soon and which ones they can safely stash away. Chromatin operates similarly: A fertilized egg cell needs everything—all the genomic information it can get—whereas a more mature cell, such as a liver cell, can read the packaging and know what it can safely ignore.</p></div> </div> </div> </div> </div> <script> window.location.href = `/today/2019/04/25/biochemists-untangle-mysteries-cellular-form-function`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 25 Apr 2019 06:00:00 +0000 Anonymous 969 at /biofrontiers National Academy of Sciences inducts 2 ýĻƷ professors /biofrontiers/2018/05/07/national-academy-sciences-inducts-2-cu-boulder-professors <span>National Academy of Sciences inducts 2 ýĻƷ professors</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2018-05-07T00:00:00-06:00" title="Monday, May 7, 2018 - 00:00">Mon, 05/07/2018 - 00:00</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/biofrontiers/sites/default/files/styles/focal_image_wide/public/article-thumbnail/ahn-luger_0.png?h=4a5a5384&amp;itok=7Tj1sLcn" width="1200" height="600" alt="Ahn Luger"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/biofrontiers/taxonomy/term/24"> Awards </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/biofrontiers/taxonomy/term/26" hreflang="en">Awards</a> <a href="/biofrontiers/taxonomy/term/342" hreflang="en">Karolin Luger</a> <a href="/biofrontiers/taxonomy/term/338" hreflang="en">Natalie Ahn</a> </div> <span>Colorado Arts and Sciences Magazine</span> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/biofrontiers/sites/default/files/styles/large_image_style/public/article-image/ahn-luger_0.png?itok=ckdaNWHi" width="1500" height="1125" alt="Ahn-Luger"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>Pioneering biochemists&nbsp;Natalie Ahn and Karolin Luger have been inducted into the&nbsp;<a href="http://nasonline.org/" rel="nofollow">National Academy of Sciences</a>, an honor that recognizes&nbsp;"distinguished and continuing achievements in original research." Membership in the prestigious organization is widely considered to be one of the highest honors that&nbsp;a scientist can receive.</p><p>"It's really a wonderful recognition of our work&nbsp;and a great honor that I share with all of my coworkers, past and present," said Luger, a professor in the&nbsp;<a href="/chembio/" rel="nofollow">Department of Chemistry and Biochemistry</a>&nbsp;and&nbsp;the&nbsp;Jennie Smoly Caruthers Endowed Chair of Biochemistry.</p><p>Luger and her colleagues study&nbsp;how genetic material is stored in human cells&nbsp;and how these organizational principles critically affect every aspect of cell life&nbsp;in health and disease. Understanding and visualizing protein-DNA assemblies at atomic resolution will allow researchers&nbsp;to better understand how the genome is decoded by the cell’s machinery.</p><p>In 2017, Luger—who is also a&nbsp;<a href="https://www.hhmi.org/" rel="nofollow">Howard Hughes Medical Institute</a>&nbsp;(HHMI) Investigator—<a href="https://www.hhmi.org/news/origins-dna-folding-suggested-archaea" rel="nofollow">published research</a>&nbsp;on the genomic structure of microbes called Archaea, findings that hinted at the evolutionary origins of DNA folding that all multicellular organisms use.&nbsp;The research built on Luger's cornerstone scientific achievement, which outlined the&nbsp;three-dimensional structure of the nucleosome. That finding, now widely cited in textbooks,&nbsp;was named the&nbsp;“breakthrough of the year” in 1997 by the journal&nbsp;<em>Science</em>.</p><p>Ahn joined the ýĻƷ faculty in&nbsp;1992 and served as an&nbsp;HHMI Investigator from 1994–2014.&nbsp;She serves as President of the American Society of Biochemistry and Molecular Biology.&nbsp;</p><p>“This is such a great honor," said Ahn, a Professor of Distinction in Chemistry and Biochemistry and Associate Director of the&nbsp;<a href="/biofrontiers/" rel="nofollow">BioFrontiers Institute</a>. "I owe many thanks to my past mentors, and to my wonderful colleagues, students and friends in our amazing ýĻƷ community.”</p><p>Ahn's research focuses on&nbsp;enzymatic and cellular mechanisms underlying cell signal transduction.&nbsp;She conducted pioneering work in the discovery of the mitogen-activated protein (MAP) kinase cascade, including the identification of MAP kinase kinases which are important targets for anti-cancer therapies. She was also a pioneer in the use of functional proteomics and mass spectrometry for signal transduction research.</p><p>The 2018 class of National Academy of Sciences inductees includes&nbsp;84 researchers from across the country as well as&nbsp;21&nbsp;foreign associates.&nbsp;The new inductees bring the total number of&nbsp;active members to 2,382 and the total number of foreign associates to 484.</p></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 07 May 2018 06:00:00 +0000 Anonymous 752 at /biofrontiers