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Abstract

We investigate the relationship between polity formation and the level of
economic activity. We posit a dynamic search environment in which opportu-
nities for mutually beneficial trade may be hampered by theft. Agents search
for potential trading partners and, if matched, optimally choose whether to
attempt to trade or to steal from each other. The excludability of goods — in
the form of respected property rights — is endogenously determined as a result.

We compare the equilibria of this game under anarchy to those of an iden-
tical environment in which there is a “government” in the minimal sense of an
agency that protects property rights. In exchange for protection, agents pay a
certain amount to enter the market. We find that agents’ willingness to pay for



1 Introduction

Much has been written regarding the beneficial effects of government on the level of

economic activity (see Shleifer (1998), Besley (1995) inter alia). There is a consensus

that a necessary condition to modern growth is the existence of an incentive system

that benefits those who incur the costs of productive endeavor. In particular, a pre-

condition for the voluntary exchange of goods and services in a non-autarkic economy

of non-altruistic agents is the existence of enforced property rights, such that agents

may reap the benefits of costs that they incur. For example, if levels of theft are

high, agents will not have an incentive to produce translatable goods, and will find it

optimal to revert to autarky or subsistence.

The conventional rationale for government to arise in an autarkic anarchy is the

presence of returns to scale in the protection technology. For instance, in Gross-

man (2002), a government centralizes protection activities with the aim of decreasing

the probability that a good belonging to an individual is expropriated by another.

Centralizing protection, therefore, can eliminate the over-investment of productive re-



that enforces property rights can arise through market-like mechanisms. In ASU,

agents are willing to pay for the services of a “protection agency” (or a “minimal

government”) which adjudicates in disputes and protects property rights. We adopt

a simple environment in which disputes are clear-cut in that they only arise in the

case of overt theft, and derive demand for such an entity from economic primitives.1

Unlike Nozick, we do not envision any notion of entitlements beyond institutions, and

explicitly derive the conditions under which both property and, indeed, trade itself,

may emerge.2 We ignore the possibility that government may serve other functions

in order to focus on its role protecting property rights.

The model addresses some fundamental issues regarding the nature of goods and



activity,”4



for β ∈ (0, 1). Thus, each agent seeks a proportion β of the goods produced by the

others. Note that, if agent i likes the good produced by agent j, the converse also

holds. Therefore, if two agents are anonymously matched pairwise, the conditional



to exchange have no purpose in staying in Market town since, lacking a good, nobody

will approach them close enough for any interaction. Theft, being their only option,

has no opportunity to materialize.

We also assume that agents’ histories are unobservable, and that the probability

of meeting the same agent twice is zero. We also focus on stationary equilibria, in

which agents do not adopt strategies that are contingent upon their own histories.7 As



market. If the partner has chosen to rob, she looses her good and leaves empty handed.

Thus, the instantaneous expected payoff conditional on a match is ua (trade) ≡ γG.If,

instead, the agent decides to rob, she deprives her partner of his good and consumes it

for a payoff of G. In this case she remains in the marketplace, maintaining possession

of her own produce for a continuation payoff V a in the following period. Denote

by V a the value attached to a tradeable good under anarchy. Thus, the encounter

yields W a ≡ G + δV a.9 If, however, the partners simultaneously attempt to rob, each

succeeds with probability one half. In this case, the payoff conditional on the match

is ua (rob) ≡ γW a + (1 − γ) 1
2
W a. Hence, in equilibrium,

V a = β max {ua (trade) , ua (rob)} + (1 − β) δV a. (2)

It is straightforward to demonstrate that

Lemma 1 The only equilibrium under anarchy is γ = 0.

The Market town becomes a “Den of Thieves”: farmers bring their produce to

market only to be robbed or to steal from others. They use their good, like a “bait,”

to attract partners with desired goods. Having verified the “double coincidence of





ω) and her good re-instated, thus, enabling her to stay in the marketplace yielding

ωδV g. The expected value of an appropriate match for the robber is then ug (rob) =

γW g (ω, c) + (1 − γ)
£

1
2
W g (ω, c) + 1

2
ωδV g

¤
.

The value traders attach to the good they bring to market is

V g = β max {ug (trade) , ug (rob)} + (1 − β) δV g (3)

Recall that an equilibrium is a fraction of fair traders γ consistent with the optimal

behavior of all potential traders. In a stationary equilibrium, an agent will choose

either one action (to rob or to trade) “forever”, or she will be indifferent between

the two. We are interested in understanding what equilibria can be “induced” by a

protection agency using punishment c and intensity ω of observing trades.

We start with two simple observations.14 First, if c is high enough, it is an

equilibrium for everybody to trade fairly. Second, in spite of the minimal state, the

“Den of Thieves” equilibrium exists, if detection and retribution are lenient. Indeed,

both “corner” equilibria exist for some range of punishments c.

In addition, there are ‘interior’ equilibria in which fair traders and robbers are

present in the Market Town. To find these, we look at the difference F (γ; c) between

the value of tradeable goods for perpetual fair traders V g
t and that of chronic robbers

V g
r .15 16

Figure 2 plots F (γ; c) for three different values of c, keeping other parameters

fixed.17 Any roots of F in (0, 1) correspond to interior equilibria.

Figure 2 suggests that there are values of c that potentially generate two interior

equilibria. Higher values of c are associated with only one interior equilibrium, while

γ = 1 is also an equilibrium since F (1, c) > 0. On the other hand, punishments may

also be so low that γ = 0 is the only equilibrium. According to the Figure 2, this “no

trade” equilibrium is also present in the two cases mentioned above, since F (0, c) < 0

in all the cases depicted.

Finally, it is not surprising that, if c is high enough, γ = 1 is the unique equilib-

14See lemmata 14, 15 in Appendix A.2.
15See Appendix A.2 for the validity of this approach.
16More precisely, we use a function F (γ; c) that has the same sign as this difference. See the

detailed definitions in Appendix A.1.
17Parameter values in this example are ω = 0.5, G = 1, β = 0.5, and δ = 0.9.
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Corollary 3 If ω ≥ βδ
1−δ+βδ

, then γ = 1 (full trade) is an equilibrium even if c = 0.

By corollary 3, if the detection rate is high, there is no need to inflict direct

cost c on the observed robbers to prevent robbery altogether. The fact that the

government reinstates the stolen item to the owner obliges the thieves to wait for a

future opportunity before stealing or trading, which is a sufficient deterrent in itself.

If agents are impatient or meetings are rare, this effect is exacerbated.

The relation between the equilibrium values of γ and punishment c can be con-

veniently represented graphically. Figure 3 depicts an example of an environment

described in the second part of Proposition 2. Observe that γL (c) approaches zero as

c approaches c (ω), and that γL (c) and γH (c) converge as c decreases towards c (ω).

21.510.50
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In addition observe that more severe punishments are needed to discourage rob-

bery in “patient” societies. The reason is related to Corollary 3. A high discount rate



Proposition (4) states that the inhabitants of Farmland are ready to pay for the

access to the Market Town, if the induced proportion of fair traders is above a certain

threshold, in other words, if the marketplace is safe enough. It is also easy to check

that the demand grows with



that enforces property rights. In some cases the Minimal State, viewed as a unit, may

be motivated to increase the severity of punishment as the gains from trade increase,

if it is capable of capturing part of the additional willingness to pay for protection

that arises as a result (so long as they are not constrained by the mores of the cultural

environment, or by technology).20



γ may be different from zero. We denote this ucg (trade) = γG, where the superscript

cg refers to “corrupt government”.

As for robbers, the value of their good decreases as well. In case of an unsuccessful

theft (which occurs with probability 1
2

conditional on meeting another robber)+I62.4-8.6hey

leave the marketplace empty handed. Thus,

ucg(rob) = γW g ( ω, c) + (1 − γ)
1

2
Wg ( ω, c) (7)

where Wg

( ω, c) = G + δV

gc

− ω ( c + G) = (1 − ω) G − ωc + δV

gc

.

4.1 Robustness

Assuming that government agents take bribes changes the equilibria of the model.

However, their structure



corruption introduces the possibility of a minimal state for punishments that were

previously too low.

Proposition 7 Assume βδ + δ > 1. Then ccg (ω) < c (ω). Moreover, if c ∈£
c (ω) , c (ω)

¢
. Then, γcg

L (c) < γL (c) , and γcg
H (c) > γH (c) .

Corollary 8 Suppose that c ∈ £
ccg (ω) , c (ω)

¢
. Trade can be supported in equilibrium

under corruption, whereas it cannot in its absence.

That corrupt government leads to there being less theft in a stable equilibrium

(i.e., that γcg
H (c) > γH (c)) may appear surprising. For a given γ, however, thieves are

always better off when government is corrupt. Hence, for payoffs to be equal across

strategies, γ must be higher, to “encourage” the fair traders.23

In spite of corruption, the government continues to play a role that agents are

willing to pay for. Let Dcg (γ, G) be the willingness to pay for a government in the

case of the maximal bribe c + G. This demand for government is defined as the

difference between the value of a tradeable good in the protected marketplace and

that under anarchy, as in the previous section. This demand is still increasing in the

gains from trade, provided the safety of the marketplace (γ) is kept constant.

Proposition 9 Assume βδ + δ > 1; c ∈ £
c (ω) , c (ω)

¢
and γcg

H (G, c) > γcg, where

1 > γcg > γ > 0. Then,

1. Dcg (γ, G) > 0;

2. Dcg (γ, G) is increasing in G keeping γ constant;

3. γcg
H (G, c) is decreasing in G and increasing in c.

Here, again, in order for the government to capture the increasing willingness to

pay for its services, the punishment may have to be more severe as the gains from

trade increase, in the same sense as before.

23Clearly, robbers also prefer environments in which traders are numerous; it can be shown,
however, that the increase in the payoff of a fair trader is higher than that of the robber when γ
increases, provided γ is high enough to start with.
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4.2 Payoffs from Corruption

An interesting question is whether protection agents will engage in corruption, if they

are availed of the choice. We modify the model to address this question by simply

assuming that the agency is a revenue-maximizing agent.24 The agent is able to either

charge a lump-sum tax τ , or to appropriate a fraction ' of demand D in return for

its services. We focus on stable equilibria with trade.

First, if c ∈ [c (ω) , c̄ (ω)] , the only stable trading equilibrium is γ = 1, both in

corrupt and in non-corrupt environments. Therefore payoffs, demand for government

and government revenue are identical, since no bribes will be paid. A more interesting

case is where βδ + δ > 1, c ∈ £
c (ω) , c (ω)

¢
so that, in both environments, there are



5 Welfare Implications

In this section, we close the model by extending it to an environment with repeated

production. Although the value function does not have as clear an interpretation as

before25; however, this environment is better suited to addressing the welfare implica-

tions of introducing the minimal state. In the extended “economy” we can determine

the quantity produced and consumed in a steady state and thus, compare this quan-

tity across equilibria with and without the government. As will be shown below, the

Minimal State, by protecting property rights, induces more production and consump-

tion (per a time period), thus increasing well-being of the farmers.

Additional goods produced with enforced property rights can be thought of as a

“real” source of the willingness to pay for the government.

5.1 Production Economy

We now turn to a more detailed analysis. Instead of a one-off trading opportunity,

farmers may travel between locations at their discretion. When in Farmland, they

may choose to produce the translatable good and, if they leave Market town, they

are free to return to Farmland to obtain more of the translatable good. Hence, in any

trading equilibrium, value functions represent the expected value not only of holding

one good but to being a farmer for the indefinite future, namely, producing a good

in a Farmland and selling it in the Market town. Travel between locations takes one

period, and is otherwise costless. If they choose to remain in Farmland, they earn

utility ψ — which is set to zero for now.

Normalize the total mass of agents to unity. The fraction of people in Market

town at time t is denoted by nt. Let xt
in be the fraction of people entering Market

town, and xt
out be the fraction of people leaving the market place at time t. The

evolution of the population in Market town nt is then

nt+1



agents.

Farmland

Market town

Xin

Xout

Figure 5: Geography of the Environment

The structure of equilibria in this closed model (economy with production) resem-

bles that in the pure exchange economy.

Proposition 11 In the “closed” environment, the set of equilibria Γcm(c) is:

Γcm (c) =


{0} if c ≤ c

Hc) is:







Depending on market structure26, the portion of the surplus that farmers obtain

should be in the [0, D (γ, G



Hence, in environments with strong non-market systems of production and exchange

or with strong social networks — each of which can be interpreted as high levels of ψ

— the welfare-improving role of a Minimal State is diminished.

It is important to stress that the role of the “state” in this model does not nec-

essarily have to be played by the official government. The only implication that we

can draw from the analysis in this respect is that the emergence of trade (market

economy) gives rise to the institution of property rights. If protection is not (ade-

quately) provided by offi



punish detected robbers and re-instate property to its owners. By so doing it imposes

direct or indirect costs on the robbers, thus encouraging more agents to trade fairly.

Mutually beneficial trades occur more often, and more is produced and consumed.



which agents have an option may in



Let

F (γ; c) = κ (γ) [V g
t (γ; c) − V g

r (γ; c)] ; (19)



provided V g
r > 0. The last inequality stems from the fact that V g

t (0; c)−V g
r (0; c) < 0

(by assumption) and V g
t (0; c) = 0 by definition.

Clearly, if V g
t (γ; c) − V g

r (γ; c) < 0 for a range of γ : γ 6= 0, then none of the

values in the range is consistent with a stationary subgame perfect Nash equilibrium.

Similarly V g
t (1; c) − V g

r (1; c) > 0 implies γ = 1 is an equilibrium, as the one shot

deviation (rob and then trade) is unprofitable:

Ṽ g
t (1; c) − V g

t (1; c) < 0, (22)

where

Ṽ g
t (1; c) = β (G(1 − ω) − cω + δV g

t (1; c)) + (1 − β) δV g
t (1; c) . (23)

Indeed,

Ṽ g
t (1; c) − V g

t (1; c) = (24)

= Gβ − Gβω − cβω − V g
t (1; c) (1 − δ) <

< Gβ − Gβω − cβω − V g
r (1; c) (1 − δ) = 0

Lemma 14 If c ≥ c(ω), then γ = 1 is an equilibrium.

Proof. Given γ = 1, the value of trading forever is

V g
t (1; c) = β

G

1 − δ + βδ
, (25)

while the value of robbing forever is

V g
r (1; c) = β

(G (1 − ω) − cω)

1 − δ
. (26)

Clearly, if F (1; c) = V g
t (1; c) − V g

r (1; c) = 0, then γ = 1 is an equilibrium. If

F (1; c) > 0 then γ = 1 is an equilibrium by lemma 13. But F (1; c) > 0 if and only if

c > c (ω) ≡ G (βδ(1 − ω) − ω(1 − δ))

ω (βδ + 1 − δ)
. (27)

28



Lemma 15 If c ≤ c̄(ω), then γ = 0 is an equilibrium.

Proof. The value of trading forever provided γ = 0 is zero. Thus, for F (0; c) ≤ 0,

it is sufficient to have the value of robbing forever to be positive positive, V g
r (0; c) ≥ 0,

which is equivalent to requiring

G (1 − ω) − cω ≥ 0, (28)

so that

c ≤ c̄ (ω) ≡ G (1 − ω)

ω
. (29)

The conclusion then follows, again, by lemma 13.

Lemma 16 If c > c̄ (ω) there is a unique equilibrium γ = 1.

Proof. If



Claim 19 γL (c) is unstable and γH (c) is stable. 30

Proof. Fix c0 in the range in which γL is well defined. Assume that the fraction

of fair traders is γL (c0) . Let c1 = c0 + ε, ε > 0. Then F (γL (c0) , c1) > 0, so that the

fraction of the fair traders should increase.31 It will continue to grow till it reaches

γH (c1) as γL (c1) < γL (c0) < γH (c1) and F (γH (c1) , c1) = 0. F (γ, c1) < 0 for

γ > γH (c1) ,32 so agents should gravitate towards γH(c1) also. If the punishment is

reduced even marginally at γL (c0) , then F (γL (c0) , c1) < 0, thus robbing becomes

more attractive. As the last inequality is satisfied for all γ < γL (c0) , the new equi-

librium will be γ = 0. Thus, slightly more punishment will increase the proportion



that γ = 1 is an equilibrium and F (0; c) < 0 implies γ = 0 is an equilibrium. Recall

representation (20) . Clearly, kF < 0, if

c < c̄ (ω) = G
(1 − ω)

ω
, (30)

while bF > 0, and aF < 0 if

c <
G (1 − ω2)

ω2
. (31)

The polynomial is maximized at γ = γ∗, where

γ∗ =
1

2

(G(1 − δ) + Gω(1 − δ) + cω(1 − δ + βδ))

(−Gω2 + G − cω2) βδ
. (32)

If γ∗ > 1, then F (1; c) > 0, as the upper root should be above unity. Evidently γ∗

> 1 if and only if

c > c∗ ≡ (2βδ(1 − ω) − (1 − δ))

(βδ − δ + 2βδω + 1)

(ω + 1) G

ω
. (33)

To derive the lower bound, note that there are two possible cases that can lead the

polynomial F (γ; c) to be negative for all γ ∈ [0, 1] . The first case occurs when γ∗, at

which F is maximized, is above unity. In this case F hits zero at most once between

zero and one. Thus, if F (1; c) < 0, then it is negative for any γ ∈ [0, 1] . Secondly,

if γ∗ < 1 and F (γ∗; c) < 0, then, F (γ; c) < 0 for any γ. We will start with the first

case, as it generates a higher lower bound on c, given that γ∗ strictly increases in c

(which can be verified directly from (32)).

Lemma 20 If βδ + δ ≤ 1 and c < c (ω) , then there is a unique equilibrium γ = 0.

Proof. Note that if c < c (ω) , then F (1; c) < 0. If c > c∗, then γ∗ > 1. Therefore

if c∗ < c (ω) , then c ∈ [c∗, c (ω



as required. It is left to show that in this case if c < c∗, then the equilibrium

remains unique, γ = 0. Consider c = c∗. As c∗ < c (ω) , and γ∗ = 1, it implies

F (γ∗ (c∗) ; c∗) < 0. As γ∗ is the maximand of F, it follows that F (γ; c∗) < 0 for any

γ. Now consider c0 < c∗. It can be easily shown that F decreases in c for any γ.

Therefore, F (γ; c0) < 0. The case of equality βδ + δ = 1 is trivial. This completes

the proof of proposition (2) .

Lemma 21 If βδ + δ > 1 and c < c (ω) , then there is a unique equilibrium γ = 0.

Proof. If βδ+δ > 1 then c∗ > c (ω) , therefore, for c < c (ω) < c∗ first, F (1; c) < 0

and, second, γ∗ < 1. Therefore, the parabola F (γ; c) can cross zero twice if the

discriminant

H (c; β, δ, ω) ≡ b2
F (c) − 4aF (c) kF (c) (36)

is positive. Whenever H is negative, F (γ; c) lies below zero for any γ and, in this

case, the only equilibrium is γ = 0. It remains to derive lower bound, c (ω) , on the

severity of punishment that assures that H (c; β, δ, ω) < 0. Clearly, H (c; β, δ, ω) is

quadratic in c :

H (c; β, δ, ω) = c2aH (β) + cbH (β) + kH (β) , (37)

where

kH (β) = (G − Gδ + Gω − Gδω)2 − (38)

−4Gβδ (1 − ω)
¡
Gω2 − G

¢
(δ − βδ + βδω − 1) ; (39)

bH (β) = G

Ã
2 (ω − δω + βδω) (ω − δω + 1 − δ) +

+4βδ (βδ(1 − ω) + 1 − δ) ω (2ω + 1) (1 − ω)

!
; (40)

aH (β) = ω2 (δ − βδ + 2βδω − 1)2 (41)

Since aH (β) > 0, bH (β) >



turn, kH (β) is quadratic in β :

kH (β) = ak (δ) β2 + bk (δ) β + kk (δ) , (42)

kk (δ) = G (1 − δ + ω − δω)2 ; (43)

bk (δ) = 4G2δ (1 − δ) (1 − ω)
¡
ω2 − 1

¢
; (44)

ak (δ) = 4G2δ2 (1 − ω)2 ¡
ω2 − 1

¢
, (45)

Observe that kk (δ) > 0, bk (δ) < 0, ak (δ) < 0. Thus, the polynomial kH (β) has two

roots, as long as kk (δ) , bk (δ) , ak (δ) 6= 0, . The lower root is negative, while the

upper one,

βH =
−bk (δ) −

q
(bk (δ))2 − 4ak (δ) kk (δ)

2ak (δ)
(46)

βH = β1 (ω) ≡
(1 − δ) ((ω − 1)2 −

q
2 (1 − ω)3)

2δ (ω − 1)3 (47)

is positive. It is also below unity as long as

δ > δ1 (ω) ≡
p

2 (1 − ω) − (1 − ω)p
2 (1 − ω) + (1 − 2ω) (1 − ω)

(48)

For δ > δ1 (ω) and β > β1 (ω) , kH (β) < 0. In this case polynomial H (c; β, δ, ω) has

two roots of opposing sign. Recall that aH (β) > 0, so that H (c; β, δ, ω) is negative

for all the values of c in between the two roots, which means F does not have real

roots (γ) and is always negative implying that the only equilibrium is γ = 0. If c is

below the lower root of H (c), quadratic polynomial F (γ) has negative roots. Thus

as long as c is below the upper (positive) root of H (c; β, δ, ω) , the only equilibrium

is γ = 0. Denote this root by c (ω) :

c (ω) ≡ −bH +
p

b2
H − 4aHkH

2aH
. (49)

33



Finally, assume that βδ + δ > 1 and

c (ω) < c < c (ω)

We have to show that in this case there are three equilibria: γ = 0, and a couple

γL < γH < 1. The two roots of the polynomial F (γ; c) , are

γL (c) =
−bF



that D (γ, G) is increasing in the proportion of fair traders, γ. The latter stems from

the fact that
∂D (γ, G)

∂γ
=

Gβ (βδ − βδω + 1 − δ)

(βδ − δ − βδω + βγδω + 1)2 > 0 (54)



and

K 0 (G) =
d

dG

µ
b2

F (G)

|aF (G)|2 +
4kF (G)

|aF (G)|
¶

= (63)

= 2T (G)

µ
(ω + 1) N (G)

δβ (G(1 − ω2) − cω2)
+ 2 (1 − ω)

¶
< 0, (64)

where

N (G) = G (1 − δ) + Gω (1 − δ) + cω (1 − δ) + cβδω, (65)

T (G) =
cω (δ − βδ + βδω − 1)

δβ (G(1 − ω2) − cω2)2 . (66)

Then

γ0H (G) = γ∗0 (G) +
K 0 (G)p

K (G)
< 0 (67)

Then
∂D (γ, G)

∂γ
γ0H (G) < 0 (68)

It has been shown that γH is increasing in c, thus the claim follows.

36



B Proofs of Additional Statements

Proof of Proposition 6. First, we have to assume that c > 0. The value of trading

forever and robbing forever in this environment, correspondingly are

V cg
t (γ) = β

γG

1 − δ(1 − β)
(69)

V cg
r (γ; c) =

β (γ + 1) ((1 − ω) G − ωc)

2 (1 − δ) + βδ(1 − γ)
. (70)

As before, if c > c (ω) , we have

V cg
r < 0 ≤ V cg

t , (71)

so the only equilibrium is γ = 1. Moreover, this is an equilibrium as long as V cg
t (1) −

V cg
r (1; c) ≥ 0, which is equivalent to setting, as before,

c > c (ω) =
(βδ(1 − ω) − ω(1 − δ)) G

(βδ − δ + 1) ω
(72)

Now assume c < c (ω) = G (1 − ω) /ω.

The difference between the two value from trading fairly, V cg (trade) , and that

from robbing,V cg (rob) , should be equal to zero in the equilibrium. This is equivalent

to requiring that F cg (γ, c) = 0, where

F cg (γ, c) ≡ (2 (1 − δ) + βδ(1 − γ)) γG − (γ + 1) ((1 − ω) G − ωc) (1 − δ(1 − β))

(73)

Again, F cg (γ, c) is a quadratic polynomial in γ :

F cg (γ, c) = k⠀γγ � �2 � � γ ) ��a δ) )�� γ( γ � �2 � � ⠀γ γ γ ) ��a δ) )�� γ(



k1 (c) < 0, a1 (c) < 0. If b1 (c) < 0, then F cg (γ; c) < 0 for all γ > 0. Thus, equilibrium

is γ = 0.

If b1 (c) ≥





by γ̂,

γ̂ =
G

ω (G + c)
− 1. (90)

This root, γ̂, is positive iff

c <
G (1 − ω)

ω
= c̄ (ω) (91)

which is consistent with the assumptions in the statement of the proposition, as

c < c (ω) < c̄ (ω) . Observe that F cg(bγ, c) is negative if c < c (ω). Indeed,

F cg(bγ, c) =
(Gω + cω − Gβδ − Gδω − cδω + Gβδω + cβδω)

(G + c)2 ω2
(G(1 − ω) − cω) G

(92)

Provided (G(1 − ω) − cω) > 0, so that c < c̄ (ω) ,

F cg(bγ, c) ≤ 0 (93)

if

Gω + cω − Gβδ − Gδω − cδω + Gβδω + cβδω ≤ 0 (94)

The last inequality holds iff

c ≤ (βδ(1 − ω) − ω(1 − δ)) G

(βδ − δ + 1) ω
= c (ω) , (95)



It follows that the lower root of F cg (γ, c) should be below the lower root of F (γ, c)

and the opposite is true for the upper root, i.e., γcg
H (c) > γH (c) , which corresponds

to the claim in the proposition.

Second, consider the complementary case to (96), c ≤ ĉ (ω) . The goal is to show

that neither F nor F cg have no positive roots in this range, in other words, ĉ (ω) <

max
©

c (ω) , ccg (ω)
ª

. Indeed, take c = ĉ (ω) , then the only intersection point of F

and F cg is γ̂ = 1 :

F x (γ, ĉ) =

µ
−1

2

¶
G (γ − 1)2 . (97)

It follows that F cg (γ, ĉ) ≤ F (γ, ĉ) for any γ and the two are equal and tangent at

γ = 1.

Moreover, the polynomial

F (γ, ĉ) =
1

2
G (δ − βδ + βδω − 1) +

1

2
Gγ2 (βδω − 2βδ) +

1

2
Gγ (βδ − 3δ − 2βδω + 3)

(98)

has only negative roots, and therefore, is negative for γ ∈ [0, 1] . Indeed, its discriminant,¡
1
(5



Clearly, φ (c) is continuous in c for c > −G. But the range of punishments we are

considering falls into this category, as ĉ = G(1−2ω)
2ω

> G, clearly. (Besides, if c+G ≤ 0,

a thief will never pay a bribe.) Moreover,

φ (c (ω)) =
(βδ − δ − βδω + 1) (δ + βδ −



Proof of Proposition 9. In this case the equilibrium demand for government

is

Dcg (γ, G) = β
Gγ

1 − δ + βδ
− βG

βδ − 2δ + 2
= (109)

=
(2γ + δ − βδ − 2γδ + βγδ − 1)

(βδ − 2δ + 2) (βδ − δ + 1)
Gβ,

which is, again proportional to the gains from trade and is positive (an increasing in

G) iff

γ > γgc ≡ 1 − δ + βδ

2 − 2δ + βδ
. (110)

Note that the lower bound on the equilibrium γ now is higher that under non-corrupt

government (for strictly positive ω), γgc > γ.



Therefore, in the presence of corruption, again the upper equilibrium γcg
H (G) is de-

creasing in G.

Lemma 22 Assume βδ + δ > 1 and c ∈ [c (ω) , c (ω)), so that the protection agency

can induce equilibrium γ = γH



The derivative of the above expression with respect to δ is

β2 (1 − δ + βδ)2 + 2β2δ (1 − β) (1 − δ + βδ)

(1 − δ + βδ)4 > 0 (121)

so it is maximized when δ = 1. Hence,

c# < G

µ
β2

β2 − 1

¶
= 0 (122)

So c# has to be negative.

This implies that the threshold c# < 0. As by assumption, c ≥ c > 0, we conclude

that D (γ, G) − Dcg (γ, G) > 0.

Proof of Theorem 10. In this environment, the population of Market town is



Lemma 25 Suppose c < ccm (ω). Then, an equilibrium exists in which there is no

trade: γ = 0.

Proof of Lemma 23. Let H be the value function of being in Farmland.

H = δ max {H, V } ⇒ H = max {0, δV } (125)

In the case of anarchy, in a steady state,

V a = β max

½
γG + δH, γW a + (1 − γ)

1

2
(W a + δH)

¾
(126)

+ (1 − β) δV a (127)

If the agent chooses to trade this period, her value function is defined by

V a (trade) = β (γG + δH) + (1 − β) δV a (128)

If there are any equilibria other than the ‘Ghost Town’ equilibrium, it must be that

V a ≥ 0, so that this becomes

V a (trade) = β
¡
γG + δ2V a

¢
+ (1 − β) δV a (129)

On the other hand, if she decides to rob her value function becomes

V a (rob) = β

µ
γW a + (1 − γ)

1

2
(W a + δF )

¶
+ (1 − β) δV a (130)

By comparing the contemporaneous terms of equations (129) and (130) ,for any in-

ternal values of the parameters, β, δ ∈ (0, 1), and regardless of continuation values

and strategies,

V a (rob) > V a



Proof of Lemma 24.



as good to steal as to trade.

V g ≥ [ωc − (1 − ω)G]

δ (1 − δ) (1 − ω)
(141)

The value function must equal the value of stealing, so that

V g = β
[(1 − ω)G − ωc]

(1 − δ) [2 + δβ (1 − ω)]
(142)

Thus, the corresponding parameter restriction is

β [(1 − ω)G − ωc] δ (1 − δ) (1 − ω) ≥ (1 − δ) [2 + δβ (1 − ω)] [ωc − (1 − ω)G] (143)



Proof of Proposition 11. Suppose γ ∈



leaves several possible cases of F cm. First, suppose acm (ω) > 0. Then, it must be

that

c >
(1 − ω2) G

ω2
>

(1 − ω) G

ω
= ccm (ω



F cm(1; c) ≤ 0, which implies that

c ≤ βδ (1 − ω) − ω

(1 + βδ) ω
G = ccm (ω) (167)

However, this contradicts the initial assumption that c ≥ c (ω) > ccm (ω). Hence this

type of equilibrium does not exist, so that if

c ∈
·

(1 − ω)G

ω
,
(1 − ω2) G

ω2

¸
(168)

then there is a unique equilibrium in which γ = 1 also. Our results so far are that if

c > c (ω), there is a unique equilibrium in which γ = 1.

In the second case, kcm(c) < 0 :

c <
(1 − ω)G

ω
(169)

so that there does exist an equilibrium with γ = 0. In addition, we know that, gener-

ically, F cm (γ; c) will have two positive real roots or none in this region of parameter

space, since kcm(c) < 0. Let

γ∗
cm = arg max

γ
F cm (γ; c) (170)

The equation for γ∗
cm is

∂F cm (γ; c)

∂γ
= 2γ∗

cmacm(c) + bcm(c) = 0 (171)

γ∗
cm =

(1 + ω) G + ωc + βδωc

2 c



equilibrium. How to show this? First,

F cm(1; c) = βδω2c + ωc + βδωc + ωc + βδ (1 − ω) ωc (174)

−βδ
¡
1 − ω2

¢
G + 2ωG − βδ (1 − ω) (1 − ω) G (175)

F cm(1; c) = 2 [1 + βδ (1 − δ)] ωc − 2βδ (1 − δ) (1 − ω) G + 2ωG (176)

F cm(1, c) is positive i� � �
� $



References

T. Besley. Property Rights and Investment Incentives: Theory and Evidence from

Ghana. Journal of Political Economy, 103(5):903—937, 1995.

R. Boadway, N. Marceau, and S. Mongrain. Tax Evasion and Trust. CREFE working

paper 104, 2000.

D. Bös and M. Kolmar. Anarchy, Efficiency and Redistribution. CESifo working

paper no. 357, November 2000.

S. DeMichelis and F. Germano. On the Indices of Zeros of Nash Fields. Journal of

Economic Theory, 94:192—217, 2000.

M. Foucault. Surveiller et Punir; Naissance de la Prison. Gallimard, Paris, 1975.

H. Grossman. Make us a King: Anarchy, Predation and the State. European Journal

of Political Economy, 18(1):31—46, March 2002.

P. J. Hammond and Y. Sun. Joint Measurability and the One-way Fubini Property for

a Continuum of Independent Random Variables. Stanford University Department

of Economics Working Paper No. 00-008, 2000.

J. Hirshleifer. Anarchy and its Breakdown. Journal of Political Economy, 103(1):

26—52, 1995.

M. Jastrow. The Civilization of Babylonia and Assyria. Arno Press, New York, 1980.

M. K. Jean Hindriks and A. Muthoo. Corruption, Extortion and Evasion. Journal of

Public Economy, 74:395—430, 1999.

K. L. Judd. The Law of Large Numbers with a Continuum of I.I.D. Random Variables.

Journal of Economic Theory, 35:19—25, 1985.

M. Kandori. Social Norms and Community Enforcement. The Review of Economic

Studies, 59(1):63—80, 1995.

O. Kirchheimer and G. Rusche. Punishment and Social Structure. Columbia Univer-

sity Press, New York, 1939.

53



N. Kiyotaki and R. Wright. A Search-Theoretic Approach to Monetary Economics.

The American Economic Review, 83(1):63—77, March 1993.

R. Nozick. Anarchy, State and Utopia. Basic Books, New York, 1974.

P. M. Romer. Endogenous Technological Change. Journal of Political Economy, 98

(5):S71—S102, 1990. Part 2: The Problem of Development: A Conference of the

Institute for the Study of Free Enterprise Systems.

A. Shleifer. State versus Private Ownership. The Journal of Economic Perspectives,

12(4):133—150, 1998.

S. Skaperdas. Cooperation, Conflict, and Power in the Absence of Property Rights.

American Economic Review, 82(5):720—739, 1992.

54


