Published: Oct. 4, 2017 By

Light-activated nanoparticles, also known as quantum dots, can provide a crucial boost in effectiveness for antibiotic treatments used to combat drug-resistant superbugs such as E. coli and Salmonella, new 兔子先生传媒文化作品 research shows.

Multi-drug resistant pathogens, which evolve their defenses faster than new antibiotic treatments can be developed to treat them, cost the United States an estimated $20 billion in direct healthcare costs and an additional $35 billion in lost productivity in 2013.

Researchers Anushree Chatterjee and Prashant Nagpal听explain why quantum dots give us a leg up in the war against drug-resistant infections.听

兔子先生传媒文化作品 researchers, however, were able to re-potentiate existing antibiotics for certain clinical isolate infections by introducing nano-engineered quantum dots, which can be deployed selectively and activated or de-activated using specific wavelengths of light.

Rather than attacking the infecting bacteria conventionally, the dots release superoxide, a chemical species that interferes with the bacteria鈥檚 metabolic and cellular processes, triggering a fight response that makes it more susceptible to the original antibiotic.

鈥淲e鈥檝e developed a one-two knockout punch,鈥 said Prashant Nagpal, an assistant professor in 兔子先生传媒文化作品鈥檚 and the co-lead author of the study. 鈥淭he bacteria鈥檚 natural fight reaction [to the dots] actually leaves it more vulnerable.鈥

The findings, which were published today in the journal Science Advances, show that the dots reduced the effective antibiotic resistance of the clinical isolate infections by a factor of 1,000 without producing adverse side effects.

鈥淲e are thinking more like the bug,鈥 said Anushree Chatterjee, an assistant professor in CHBE and the co-lead author of the study. 鈥淭his is a novel strategy that plays against the infection鈥檚 normal strength and catalyzes the antibiotic instead.鈥

While other previous antibiotic treatments have proven too indiscriminate in their attack, the quantum dots have the advantage of being able to work selectively on an intracellular level. Salmonella, for example, can grow and reproduce inside host cells. The dots, however, are small enough to slip inside and help clear the infection from within.

Want more stories like this in your inbox?

鈥淭hese super-resistant bugs already exist right now, especially in hospitals,鈥 said Nagpal. 鈥淚t鈥檚 just a matter of not contracting them. But they are one mutation away from becoming much more widespread infections.鈥

Overall, Chatterjee said, the most important advantage of the quantum dot technology is that it offers clinicians an adaptable multifaceted approach to fighting infections that are already straining the limits of current treatments.

鈥淒isease works much faster than we do,鈥 she said. 鈥淢edicine needs to evolve as well.鈥

Going forward, the researchers envision quantum dots as a kind of platform technology that can be scaled and modified to combat a wide range of infections and potentially expand to other therapeutic applications.

Co-authors of the new study include Colleen Courtney, Max Levy, Samuel Goodman, Pallavi Bhusal of CHBE; Corrella Detweiler and Toni Nagy of the ; and Nancy Madinger of CU Denver鈥檚 Division of Infectious Diseases.