Publications


Journal ArticlesBook ChaptersUS PatentsMedia Coverage

Journal Articles

  1. N. Benson, R. Colella, L. Petti, A. Rivadeneyra, G. L. Whiting. Guest Editorial: Special Issue on Direct Papers to the IEEE International Flexible Electronics Technology Conference (IFETC) 2024, IEEE Journal on Flexible Electronics, 2024, 3, 290. ()
  2. C. R. Isenhart, A. C. Hayes, G. L. Whiting. Additive Manufacturing of Scaleable Jet Impingement and Radial Taper Enhancements for Improved Flow Boiling Performance,ÌýApplied Thermal Engineering,Ìý2024, 249, 123355. ()
  3. E. Strand, E. Bihar, G. L. Whiting, et al. Roadmap onÌýPrintable Electronic Materials for Next-Generation Sensors.ÌýNano Futures,Ìý2024, 8, 032001. ()
  4. J-B. Kauzya, B. Hayes, A. C. Hayes, J. F. Thompson, C. Bellerjeau, K. Evans, J. Osio-Norgaard, G. Gavai, K. Dikshit, C. Bruns, R. MacCurdy, R. A. Street, G. L. Whiting. Direct Ink Writing of Viscous Inks in Variable Gravity Regimes using Parabolic Flights.ÌýActa Astronautica,Ìý2024, 219, 569. ()
  5. C. L. Baumbauer, A. Gopalakrishnan, M. Atreya, G. L. Whiting, A. C. Arias. Polycaprolactone-based Zinc Ink for High Conductivity Transient Printed Electronics and Antennas.ÌýAdvanced Electronic Materials,Ìý2024, 2300658. ()
  6. A. Hayes, V. Sundaram, G. Williams, S. Venkatesh, C. Isenhart, A. Yervez, C. Myles, V. Sebulsky, K. Jayaram, M. Vance, G. L. Whiting. Meeting Schools where they are: Integrating Engineering Outreach Curriculum in the Classroom without Forcing an Agenda. 2023ÌýAmerican Society for Engineering EducationÌýRocky Mountain Section Conference.Ìý2023. ()
  7. E. Bihar, E. J. Strand, C. A. Crichton, M. N. Renny, I. Bonter, T. Tran, M. Atreya, A. Gestos, J. Haseloff, R. R. McLeod, G. L. Whiting. Self-healable Stretchable Printed Electronic Cryogels for in-vivo Plant Monitoring.ÌýNPJ Flexible Electronics,Ìý2023,Ìý7, 48. ()
  8. Y. Qiu, Z. Zou, Z. Zou, N. K. Setiawan, K. V. Dikshit, G. L. Whiting, F. Yang, W. Zhang, J. Lu, B. Zhong, H. Wu, J. Xiao. Deep-learning-assisted Printed Liquid Metal Sensory System for Wearable Applications and Boxing Training.ÌýNPJ Flexible Electronics,Ìý2023,Ìý7, 37. ()
  9. B. Hayes, G. L. Whiting, R. MacCurdy. An OpenFOAM Framework to Model Thermal Bubble-driven Micro-pumps.ÌýPhysics of Fluids,Ìý2023,Ìý35, 062013. ()
  10. A. C. Hayes, E. A. Träff, C. V. Sørensen, S. V. Willems, N. Aage, O. Sigmund, G. L. Whiting. Topology Optimization for Structural Mass Reduction of Direct Drive Electric Machines.ÌýSustainable Energy Technologies and Assessments,Ìý2023,Ìý57,Ìý103254. ()
  11. E. J. Strand, M. J. Palizzi, C. A. Crichton, M. N. Renny, E. Bihar, R. R. McLeod, G. L. Whiting. Multimodal Operation of Printed Electrochemical Transistors for Sensing in Controlled Environment Agriculture.ÌýSensors and Actuators B: Chemical,Ìý2023, 387, 133763. ()
  12. M.ÌýAtreya, S. DeSousa, J-B. Kauzya, E. G. Williams, A. C. Hayes, K. Dikshit, J. Nielsen, A. Palmgren, S. Khorchidian, S. Liu, A. Gopalakrishnan, E. Bihar, C. J. Bruns, R. Bardgett, J. N. Quinton, J. Davies, J. C. Neff, G. L. Whiting. A Transient Printed Soil Decomposition Sensor based on a Biopolymer Composite Conductor. Advanced Science,Ìý2023,Ìý10, 2205785. ()
  13. M. Atreya, G. Marinick, C. Baumbauer, K. V. Dikshit, S. Liu, C. Bellerjeau, J. Nielsen, S. Khorchidian, A. Palmgren, Y. Sui, R. Bardgett, D. Baumbauer, C. J. Bruns, J. C. Neff, A. C. Arias, G. L. Whiting. Wax Blends as Tunable Encapsulants for Soil-Degradable Electroincs.ÌýACS Applied Electronic Materials, 2022, 4, 4912 . ()
  14. B. Hayes, L. Smith, H. Kibbutz, A. C. Hayes, G. L. Whiting, K. Jayaram, R. MacCurdy. Rapid Fabrication of Low-Cost Thermal Bubble-Driven Micro-Pumps.ÌýMicromachines, 2022,Ìý13, 1634. ()
  15. A. Muehlbradt, G. L. Whiting, S. Kane, L. Devendorf. Knitting Access: Exploring Stateful Textiles with People with Disabilities.ÌýDis '22: Designing Interactive Systems Conference,Ìý2022, 1058. ()
  16. H. Vennard, A. C. Hayes, G. L. Whiting. CFD Analysis of Additively Manufactured Conformal Cooling Channels for the Stator of a Direct Drive Generator.ÌýProceedings of the 2022 ASME Power Conference, VT001T15A003,Ìý2022, V001T15A003. ()
  17. A. C. Hayes, G. L. Whiting. An Analysis of Different Techniques for Cooling Direct Drive Generators.ÌýProceedings of the 2022 ASME Power Conference,Ìý2022, VT001T15A002. ()
  18. Y. Sui, A. N. Radwan, A. Gopalakrishnan, K. Dikshit, C. J. Bruns, C. A. Zorman, G. L. Whiting. A Reactive Inkjet Printing Process for Fabricating Biodegradable Conductive Zinc Structures.ÌýAdvanced Engineering Materials,Ìý2022, 25, 2200529. ()
  19. T. Hainsworth, I. Schmidt, V. Sundaram, G. L. Whiting, C. Keplinger, R. MacCurdy.ÌýSimulating Electrohydraulic Soft Actuator Assemblies Via Reduced Order Modeling.Ìý2002 IEEE 5th International Conference on Soft Robotics (RoboSoft),Ìý2022, 21-28. ()
  20. J. E. Barthold, K. McCreery, J. Martinez, C. Bellerjeau, Y. Ding, S. J. Bryant, G. L. Whiting, C. P. Neu. Particulate ECM Biomaterial Ink is 3D Printed and Naturally Crosslinked to form Structurally-Layered and Lubricated Cartilage Tissue Mimics.ÌýBiofabrication,Ìý2022, 14, 025021. ()
  21. E. J. Strand, E. Bihar, S. M. Gleason, S. Han, S. W. Schreiber, M. N. Renny, G. G. Malliaras, R. R. McLeod, G. L. Whiting. Printed Organic Electrochemical Transistors for Detecting Nutrients in Whole Plant Sap.ÌýAdvanced Electronic Materials,Ìý2022, 8, 2100853. ()
  22. A.C. Hayes, G. L. Whiting. Coupled Electromagnetic and Lattice Structure Optimization for the Rotor and Stator of Large Electric Machines.ÌýProceedings of theÌý2021 ASME Power Conference,Ìý2021,ÌýV001T12A003. ()
  23. A. C. Hayes, J. Osio-Norgaard, S. Miller, G. L. Whiting, M. E. Vance. Air Pollutant Emissions for Multi-Jet Fusion, Material-Jetting, and Digital Light Synthesis Commercial 3D Printers in a Service Bureau.ÌýBuilding and Environment,Ìý2021,Ìý202, 108008. ()
  24. B. Hayes, G. L. Whiting, R. MacCurdy. Modeling of Contactless Bubble-bubble Interactions in Microchannels with Integrated Inertial Pumps.ÌýPhysics of Fluids,Ìý2021,Ìý33, 042002. ()
  25. J. Osio-Norgaard, A. C. Hayes, G. L. Whiting. Sintering of 3D Printable Simulated Lunar Regolith Magnesium Oxychloride Cements.ÌýActa Astronautica,Ìý2021, 183,Ìý227. ()
  26. A. C. Hayes, G. L. Whiting. Reducing the Structural Mass of Large Direct Drive Wind Turbine Generators through Triply Periodic Minimal Surfaces Enabled by Hybrid Additive Manufacturing.ÌýClean Technologies,Ìý2021,Ìý3, 227. ()
  27. Y. Sui, M. Atreya, S. Dahal, A. Gopalakrishnan, R. Khosla, G. L. Whiting. Biodegradation of an Addivitely Fabricated Capacitive Soil Moisture Sensor.ÌýACS Sustainable Chemistry and Engineering,Ìý2021,Ìý9, 2486. ()
  28. A. C. Hayes, J. Osio-Norgaard, S. Miller, M. E. Vance, G. L. Whiting. Influence of Powder Type on Aerosol Emissions in Powder-Binder Jetting with Emphasis on Lunar Regolith for In Situ Space Applications.ÌýACS Environmental Science and Technology Engineering,Ìý2021, 1, 183. ()Ìý
  29. S. Bahal, W. Yilma, Y. Sui, M. Atreya, S. Bryan, V. Davis, G. L. Whiting, R. Khosla. Degradability of Biodegradable Soil Moisture Sensor Components and their Effect on Maize (Zea mays L.) Growth.ÌýSensors,Ìý2020, 20, 6154. ()
  30. M. Atreya, K. V. Dikshit, G. Marinick, J. Nielson, C. Bruns, G. L. Whiting. A Poly(lactic acid)-based Ink for Biodegradable Printed Electronics with Conductivity Enhanced through Solvent Aging.ÌýACS Applied Materials and Interfaces,Ìý2020, 12, 23494.Ìý()
  31. A. C. Hayes, G. L. Whiting.ÌýPowder-Binder Jetting Large-Scale, Metal Direct-Drive Generators: Selecting the Powder, Binder, and Process Parameters. Proceedings of theÌý2019 ASME Power Conference,Ìý2019,ÌýV001T12A004. ()
  32. J. F. Thompson, C. Bellerjeau, G. Marinick, J. Osio-Norgaard, A. Evans, P. Carry, R. A. Street, C. Petit, G. L. Whiting. Intrinsic Thermal Desorption in a 3D Printed Multifunctional Composite CO2ÌýSorbent with Embedded Heating Capability. ACS Applied Materials and Interfaces, Ìý2019, 11, 43337. ()
  33. M. Li, G. Daniel, B. E. Kahn, L. H. Ohara, B. D. F. Casse, N. Pretorius, B. S. Krusor, P. Mei, G. L. Whiting, C. Tonkin, D. Lupo. All-Printed, Large-Area E-Field Antenna Utilizing Printed Organic Rectifying Diodes for RF Energy Harvesting.Ìý Proceedings of theÌý2018 IEEE 18th International Conference on Nanotechnology,Ìý2018, DOI: 10.1109/NANO.2018.8626318. ()
  34. P. Mei, G. Daniel, D. E. Schwartz, T. Ng, B. S. Krusor, G. L. Whiting. ÌýDigital Fabrication and Integration of a Flexible Wireless Sensing Device. ÌýIEEE Sensors Journal, 2017, 17, 7114. ()
  35. G. L. Whiting, D. E. Schwartz, T. Ng, B. S. Krusor, R. Krivacic, A. Pierre, A. C. Arias, M. Harting, D. VanBuren, K. Short. ÌýDigitally Fabricated Multi-Modal Wireless Sensing using a Combination of Printed Sensors and Transistors with Silicon Components. ÌýFlexible and Printed Electronics, 2017, 2, 034002. ()
  36. D. E. Schwartz, J. Rivnay, G. L. Whiting, P. Mei, Y. Zhang, B. S. Krusor, G. Daniel, S. Ready, J. Veres, R. A. Street. ÌýFlexible Hybrid Electronic Circuits and Systems. ÌýIEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2016, 7, 27. ()
  37. R. A. Street, T. Ng, D. E. Schwartz, G. L. Whiting, J. P. Lu, R. Bringans, J. Veres. ÌýFrom Printed Transistors to Printed Smart Systems. ÌýProceedings of the IEEE, 2015, 103, 607. ()
  38. P. Y. Maeda, J. P. Lu, G. L. Whiting, D. K. Biegelsen, S. Raychaudhuri, R. Lujan, J. Veres, E. M. Chow, V. Gupta, G. N. Nielson, S. Paap.Ìý Micro Chiplet Printer for Micro-scale Photovoltaic System Assembly.Ìý IEEEÌý42ndÌýPhotovoltaic Specialist Conference,Ìý2015, 1. ()
  39. S. Ready, G. L. Whiting, T. Ng. ÌýMulti-Material 3D Printing. ÌýProceedings of the NIP & Digital Fabrication Conference, 2014, 120. ()
  40. T. Ng, P. Mei, G. L. Whiting, D. E. Schwartz, B. Abraham, Y. Wu, J. Veres. ÌýComparison of Conductor and Dielectric Inks in Printed Organic Complementary Transistors. ÌýProceedings of the SPIE, 2014, 9185, 91850X. ()
  41. J. P. Lu, J. D. Thompson, G. L. Whiting, D. K. Biegelsen, S. Raychaudhuri, R. Lujan, J. Veres, L. L. Lavery, A. R. Vökel, E. M. Chow. ÌýOpen and Closed Loop Manipulation of Charged Microchiplets in an Electric Field. ÌýApplied Physics Letters, 2014, 105, 054103. ()
  42. A. M. Gaikwad, D. A. Steingart, T. Ng, D. E. Schwartz, G. L. Whiting. ÌýA Flexible High Potential Printed Battery for Powering Printed Electronics. ÌýApplied Physics Letters, 2013, 102, 233302. ()
  43. S. Ready, F. Endicott, G. L. Whiting, T. Ng, E. M. Chow, J. P. Lu.Ìý 3D Printed Electronics.Ìý Proceedings of the NIP & Digital Fabrication Conference,Ìý2013, 9. ()
  44. N. A. D. Yamamoto, L. L. Lavery, B. F. Nowacki, I. R. Grova, G. L. Whiting, B. Krusor, E. R. de Azevedo, L. Akcelrud, A. C. Arias, L. S. Roman. ÌýSynthesis and Solar Cell Applicaiton of New Alternating Donor-Acceptor Copolymers Based on Variable Units of Fluorene, Thiophene and Phenylene. ÌýThe Journal of Physical Chemistry C, 2012, 116, 18641. ()
  45. T. Ng, D. E. Schwartz, L. L. Lavery, G. L. Whiting, B. Russo, B. Krusor, J. Veres, P. Bröms, L. Herlogsson, N. Alam, O. Hagel, J. Nilsson, C. Karlsson. ÌýScaleable Printed Electronics: An Organic Decoder Addressing Ferroelectric Non-Volatile Memory. ÌýScientific Reports, 2012, 2, 585. ()
  46. A. C. Arias, T. Ng, G. L. Whiting, J. Daniel. ÌýPrinted Thin Film Transistor: Materials and Applications. ÌýProceedings of the SPIE, 2011, 8117, 81170Y-1. ()
  47. A. M. Gaikwad, G. L. Whiting, D. A. Steingart, A. C. Arias. ÌýHighly Flexible, Printed Alkaline Batteries Based on Mesh-Embedded Electrodes. ÌýAdvanced Materials, 2011, 23, 3251. ()
  48. L. L. Lavery, G. L .Whiting, A. C. Arias. ÌýAll Ink-Jet Printed Polyfluorene Photosensor for High Illuminance Detection. ÌýOrganic Electronics, 2011, 11, 682. ()
  49. S. Sambandan, G. L. Whiting, A. C. Arias, R. A. Street. ÌýFast Polymer Semiconductor Transistor by Nanoparticle Self-Assembly. ÌýOrganic Electronics, 2010, 11, 1935. ()
  50. A. C. Arias, J. Daniel, T. Ng, S. Garner, G. L. Whiting, L. L. Lavery, B. Russo, B. Krusor. ÌýFlexible Printed Sensor Tape Based on Solution Processed Materials. ÌýIEEE 23rd Meeting of the Photonics Society, 2010, 11, 18. ()
  51. G. L. Whiting, A. C. Arias. ÌýChemically Modified Ink-Jet Printed Electrodes for Organic Field-Effect Transistors. ÌýApplied Physics Letters, 2009, 95, 253302. ()
  52. S. Mijalkovic, D. Green, A. Nejim, G. L. Whiting, A. Rankov, E. Smith, J. J. M. Halls, C. E. Murphy. ÌýModelling of Organic Field-Effect Transistors for Technology and Circuit Design. ÌýIEEE 26th International Conference on Microelectronics, 2008, 469. ()
  53. K-H. Yim, G. L. Whiting, C. E. Murphy, J. J. M. Halls, J. H. Burroughes, R. H. Friend, J-S. Kim. ÌýControlling Electrical Properties of Conjugated Polymers via a Solution-Based p-type Doping. ÌýAdvanced Materials, 2008, 20, 3319. ()
  54. C. R. McNeil, J. J. M. Halls, R. Wilson, G. L. Whiting, S. Berkebile, M. G. Ramsey, R. H. Friend, N. C. Greenham. ÌýEfficient Polythiophene/Polyfluorene co-Polymer Bulk Heterojunction Photovoltaic Devices: Device Physics and Annealing Effects.Ìý Advanced Functional Materials, 2008, 18, 2309. ()
  55. J. C. Pinto, G. L. Whiting, S. Khodabaksh, L. Torre, A. B. Rodríguez, R. M. Dalgliesh, A. M. Higgins, J. W. Andreasen, M. M. Nielsen, M. Geoghegan, W. T. S. Huck, H. Sirringhaus. ÌýOrganic Thin Film Transistors with Polymer Brush Gate Dielectrics Synthesized by Atom Transfer Radical Polymerization. ÌýAdvanced Functional Materials, 2008, 18, 36. ()
  56. G. L. Whiting, H. J. Snaith, S. Khodabakhsh, J. W. Andreasen, D. W. Brieby, M. M. Nielsen, N. C. Greenham, R. H. Friend, W. T. S. Huck. ÌýEnhancement of Charge Transport Characteristics in Polymeric Films using Polymer Brushes. ÌýNano Letters, 2006, 6, 573. ()
  57. H. J. Snaith, G. L. Whiting, B. Sun, N. C. Greenham, W. T. S. Huck, R. H. Friend.Ìý Self-Organization of Nanocrystals in Polymer Brushes. ÌýApplication in Heterojunction Photovoltaic Devices. ÌýNano Letters, 2005, 5, 1653. ()
  58. W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, A. P. Alivisatos. ÌýControlling the Morphology of Nanocrystal-Polymer Composites for Solar Cells. ÌýAdvanced Functional Materials, 2003, 13, 73. ()

Book Chapters

  1. R. A. Street, T. Ng, S. E. Ready, G. L. Whiting. ÌýPrinting Techniques for Display Fabrication. ÌýIn Handbook of Visual Display Technology. ÌýC. Janglin, W. Cranton, M. Fihn, Eds., Springer, 2015, pp 1289-1303. ()
  2. G. L. Whiting, T. Farhan, W. T. S. Huck. ÌýPolymer Brushes: ÌýTowards Applications. ÌýIn Polymer Brushes: Synthesis, Characterization, Applications. ÌýR. C. Advincula, W. J. Brittain, K. C. Caster, J. Rühe, Eds., Wiley-VCH, 2004, pp 371-380. ()

US Patents

  1. 11,479,850 (2022) -ÌýSystems and Methods for Implementing Digital Vapor Phase Patterning using Variable Data Digital Lithographic Printing Techniques ()
  2. 11,417,849 (2022) - Fabrication of Corrugated Gate Dielectric Structures using Atomic Layer Etching ()
  3. 10,903,176 (2021) - Method of Forming a Photodiode ()
  4. 10,903,173 (2021) - Pre-Conditioned Self-Destructing Substrate ()
  5. 10,818,842 (2020) - Selective Surface Modification of OTFT Source/Drain Electrodes by Ink-Jetting F4TCNQ ()Ìý
  6. 10,740,577 (2020) - Passive Sensor Tag System ()
  7. 10,490,746 (2019) - Selective Surface Modification of OTFT Source/Drain Electrodes by Ink-Jetting F4TCNQ ()Ìý
  8. 10,466,193 (2019) - Printed Gas Sensor ()
  9. 10,332,717 (2019) - Self-Limiting Electrical Triggering for Initiating Fracture of Frangible Glass ()
  10. 10,283,725 (2019) - Organic Schottky Diodes ()
  11. 10,262,954 (2019) - Transient Electronic Device with Ion-Exchanged Glass Treated Interposer ()
  12. 10,224,297 (2019) - Sensor and Heater for Stimulus-Initated Fracture of a Substrate ()
  13. 10,206,288 (2019) - Bare Die Intergation with Printed Components on Flexible Substrate ()
  14. 10,202,990 (2019) - Complex Stress-Engineered Frangible Structures ()
  15. 10,199,586 (2019) - Device Comprising Dielectric Interlayer ()
  16. 10,178,447 (2019) - Sensor Network System ()
  17. 10,165,677Ìý(2018) - Bare Die Integration with Printed Components on a Flexible Substrate without Laser Cut ()
  18. 10,014,261 (2018) - Microchip Charge Patterning ()
  19. 10,012,250 (2018) - Stress-Engineered Frangible Structures ()
  20. 9,952,082 (2018) - Printed Level Sensor ()
  21. 9,886,862 (2018) - Automated Air Traffic Communications ()
  22. 9,780,044 (2017) - Transient Electronic Device with with Ion-Exchanged Glass Treated Interposer ()
  23. 9,629,252 (2017) - Printed Electronic Components on Universally Patterned Substrate for Integrated Printed Electronics ()
  24. 9,594,039 (2017) - Photometric Enthalpy Change Detection System and Method ()
  25. 9,579,904 (2017) - System and Method for Thermal Transfer of Thick Metal Lines ()
  26. 9,473,047 (2016) - Method for Reduction of Stiction while Manipulating Micro-Objects on a Surface ()
  27. 9,431,283 (2016) - Direct Electrostatic Assembly with Capacitively Coupled Electrodes ()
  28. 9,396,972 (2016) - Micro-assembly with Planarized Embedded Microelectronic Dies ()
  29. 9,356,603 (2016) - Thermally Tempered Glass Substrate using CTE Mismatched Layers and Paste Mixtures for Transient Electronic Systems ()
  30. 9,356,248 (2016) - n-Type Organic Thin-Film Transistor using Semiconductor Blend ()
  31. 9,305,807 (2016) - Fabrication Method for Microelectronic Components and Microchip Inks used in Electrostatic Assembly ()
  32. 9,219,126 (2015) - High-k Dielectrics with a Low-k Interface for Solution Processed Devices ()
  33. 9,154,138 (2015) - Stressed Substrates for Transient Electronic Systems ()
  34. 8,884,156 (2014) - Solar Energy Harvesting Device using Stimuli-Responsive Material ()
  35. 8,872,224 (2014) - Solution Processed Neutron Detector ()
  36. 8,735,871 (2014) - Cross-Linked Fluorinated Dielectrics for Organic Thin Film Transistors ()
  37. 8,685,769 (2014) - Microchip Charge Patterning ()
  38. 8,642,379 (2014) - Oxidized Contacts for Thin Film Transistors ()
  39. 8,502,356 (2013) - Controlled Semiconductor Crystallization in Organic Thin Film Transistors ()
  40. 8,481,994 (2013) - Contact Doping for Organic Thin Film Transistors ()
  41. 8,481,360 (2013) - Vertical Channel Organic Thin Film Transistor ()
  42. 8,450,142 (2013) - Containment of Organic Semiconductor in Thin Film Transistors ()
  43. 8,430,705 (2013) - Self Assembly of Field Emission Tips by Capillary Bridge Formations ()
  44. 8,394,665 (2013) - Contact Treatments for Organic Thin Film Transistors ()
  45. 8,089,065 (2012) - Self Aligned Process for Organic Thin Film Transistors ()
  46. 8,053,818 (2011) - Thin Film Field Effect Transistor with Dual Semiconductor Layers ()
  47. 8,040,609 (2011) - Self-Adjusting Solar Light Transmission Apparatus ()

Selected Media Coverage

  1. ÍÃ×ÓÏÈÉú´«Ã½ÎÄ»¯×÷Æ· Innovators Awarded $1.25M in Collercialization Funding (2022): ÍÃ×ÓÏÈÉú´«Ã½ÎÄ»¯×÷Æ·
  2. In the Air, on the Ground, and Everywhere in BetweenÌý(2022): CU Engineering Magazine
  3. The Internet of Living Things (2021):ÌýCU Engineering Magazine
  4. Cheap Sensors for Smarter Farmers (2021):
  5. Seed grant could lead to materials needed for unconventional computing revolution (2021): ÍÃ×ÓÏÈÉú´«Ã½ÎÄ»¯×÷Æ·
  6. Biodegradable sensors aim to make farming more effecient (2020): June/July 2020 issue ofÌý
  7. CU researchers to explore 3D printing in reduced gravity with NASA grant (2020): ÍÃ×ÓÏÈÉú´«Ã½ÎÄ»¯×÷Æ·
  8. Creating the Internet of Living Things (2019): ÍÃ×ÓÏÈÉú´«Ã½ÎÄ»¯×÷Æ·
  9. ARPA-E Award for Agricultural Sensors (2019): , ÍÃ×ÓÏÈÉú´«Ã½ÎÄ»¯×÷Æ·, Press release from US Senators and .Ìý
  10. Transient electronic systems based on stress engineered glass (2015): , , , , , , and others.
  11. Printed hybrid electronic systems for space applications (2013):Ìý
  12. Electrostatic microassembly for micro manufacturing (2013):